//! Functions for balancing a matrix. use simba::scalar::RealField; use std::ops::{DivAssign, MulAssign}; use crate::allocator::Allocator; use crate::base::dimension::{Dim, U1}; use crate::base::storage::Storage; use crate::base::{DefaultAllocator, MatrixN, VectorN}; /// Applies in-place a modified Parlett and Reinsch matrix balancing with 2-norm to the matrix `m` and returns /// the corresponding diagonal transformation. /// /// See https://arxiv.org/pdf/1401.5766.pdf pub fn balance_parlett_reinsch(m: &mut MatrixN) -> VectorN where DefaultAllocator: Allocator + Allocator, { assert!(m.is_square(), "Unable to balance a non-square matrix."); let dim = m.data.shape().0; let radix: N = crate::convert(2.0f64); let mut d = VectorN::from_element_generic(dim, U1, N::one()); let mut converged = false; while !converged { converged = true; for i in 0..dim.value() { let mut c = m.column(i).norm_squared(); let mut r = m.row(i).norm_squared(); let mut f = N::one(); let s = c + r; c = c.sqrt(); r = r.sqrt(); if c.is_zero() || r.is_zero() { continue; } while c < r / radix { c *= radix; r /= radix; f *= radix; } while c >= r * radix { c /= radix; r *= radix; f /= radix; } let eps: N = crate::convert(0.95); if c * c + r * r < eps * s { converged = false; d[i] *= f; m.column_mut(i).mul_assign(f); m.row_mut(i).div_assign(f); } } } d } /// Computes in-place `D * m * D.inverse()`, where `D` is the matrix with diagonal `d`. pub fn unbalance(m: &mut MatrixN, d: &VectorN) where DefaultAllocator: Allocator + Allocator, { assert!(m.is_square(), "Unable to unbalance a non-square matrix."); assert_eq!(m.nrows(), d.len(), "Unbalancing: mismatched dimensions."); for j in 0..d.len() { let mut col = m.column_mut(j); let denom = N::one() / d[j]; for i in 0..d.len() { col[i] *= d[i] * denom; } } }