use num::Zero; use num_complex::Complex; use na::{Scalar, DefaultAllocator, Matrix, MatrixN, MatrixMN}; use na::dimension::Dim; use na::storage::Storage; use na::allocator::Allocator; use lapack::fortran as interface; /// The cholesky decomposion of a symmetric-definite-positive matrix. pub struct Cholesky where DefaultAllocator: Allocator { l: MatrixN } impl Cholesky where DefaultAllocator: Allocator { /// Complutes the cholesky decomposition of the given symmetric-definite-positive square /// matrix. /// /// Only the lower-triangular part of the input matrix is considered. #[inline] pub fn new(mut m: MatrixN) -> Option { // FIXME: check symmetry as well? assert!(m.is_square(), "Unable to compute the cholesky decomposition of a non-square matrix."); let uplo = b'L'; let dim = m.nrows() as i32; let mut info = 0; N::xpotrf(uplo, dim, m.as_mut_slice(), dim, &mut info); lapack_check!(info); Some(Cholesky { l: m }) } pub fn unpack(mut self) -> MatrixN { self.l.fill_upper_triangle(Zero::zero(), 1); self.l } pub fn l(&self) -> MatrixN { let mut res = self.l.clone(); res.fill_upper_triangle(Zero::zero(), 1); res } /// Solves the symmetric-definite-positive linear system `self * x = b`, where `x` is the /// unknown to be determined. pub fn solve(&self, b: &Matrix) -> Option> where S2: Storage, DefaultAllocator: Allocator { let mut res = b.clone_owned(); if self.solve_mut(&mut res) { Some(res) } else { None } } /// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is /// the unknown to be determined. pub fn solve_mut(&self, b: &mut MatrixMN) -> bool where DefaultAllocator: Allocator { let dim = self.l.nrows(); assert!(b.nrows() == dim, "The number of rows of `b` must be equal to the dimension of the matrix `a`."); let nrhs = b.ncols() as i32; let lda = dim as i32; let ldb = dim as i32; let mut info = 0; N::xpotrs(b'L', dim as i32, nrhs, self.l.as_slice(), lda, b.as_mut_slice(), ldb, &mut info); lapack_test!(info) } /// Computes the inverse of the decomposed matrix. pub fn inverse(mut self) -> Option> { let dim = self.l.nrows(); let mut info = 0; N::xpotri(b'L', dim as i32, self.l.as_mut_slice(), dim as i32, &mut info); lapack_check!(info); // Copy lower triangle to upper triangle. for i in 0 .. dim { for j in i + 1 .. dim { unsafe { *self.l.get_unchecked_mut(i, j) = *self.l.get_unchecked(j, i) }; } } Some(self.l) } } /* * * Lapack functions dispatch. * */ /// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex`, `Complex`) /// supported by the cholesky decompotition. pub trait CholeskyScalar: Scalar { fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32); fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, b: &mut [Self], ldb: i32, info: &mut i32); fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32); } macro_rules! cholesky_scalar_impl( ($N: ty, $xpotrf: path, $xpotrs: path, $xpotri: path) => ( impl CholeskyScalar for $N { #[inline] fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) { $xpotrf(uplo, n, a, lda, info) } #[inline] fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, b: &mut [Self], ldb: i32, info: &mut i32) { $xpotrs(uplo, n, nrhs, a, lda, b, ldb, info) } #[inline] fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) { $xpotri(uplo, n, a, lda, info) } } ) ); cholesky_scalar_impl!(f32, interface::spotrf, interface::spotrs, interface::spotri); cholesky_scalar_impl!(f64, interface::dpotrf, interface::dpotrs, interface::dpotri); cholesky_scalar_impl!(Complex, interface::cpotrf, interface::cpotrs, interface::cpotri); cholesky_scalar_impl!(Complex, interface::zpotrf, interface::zpotrs, interface::zpotri);