#![cfg_attr(rustfmt, rustfmt_skip)] use na::Matrix3; #[test] fn full_piv_lu_simple() { let m = Matrix3::new( 2.0, -1.0, 0.0, -1.0, 2.0, -1.0, 0.0, -1.0, 2.0); let lu = m.full_piv_lu(); assert_eq!(lu.determinant(), 4.0); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); assert!(relative_eq!(m, lu, epsilon = 1.0e-7)); } #[test] fn full_piv_lu_simple_with_pivot() { let m = Matrix3::new( 0.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 0.0); let lu = m.full_piv_lu(); assert_eq!(lu.determinant(), -4.0); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); assert!(relative_eq!(m, lu, epsilon = 1.0e-7)); } #[cfg(feature = "arbitrary")] mod quickcheck_tests { macro_rules! gen_tests( ($module: ident, $scalar: ty) => { mod $module { use std::cmp; use num::One; use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4}; #[allow(unused_imports)] use core::helper::{RandScalar, RandComplex}; quickcheck! { fn full_piv_lu(m: DMatrix<$scalar>) -> bool { let mut m = m.map(|e| e.0); if m.len() == 0 { m = DMatrix::<$scalar>::new_random(1, 1).map(|e| e.0); } let lu = m.clone().full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); relative_eq!(m, lu, epsilon = 1.0e-7) } fn full_piv_lu_static_3_5(m: Matrix3x5<$scalar>) -> bool { let m = m.map(|e| e.0); let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); relative_eq!(m, lu, epsilon = 1.0e-7) } fn full_piv_lu_static_5_3(m: Matrix5x3<$scalar>) -> bool { let m = m.map(|e| e.0); let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); relative_eq!(m, lu, epsilon = 1.0e-7) } fn full_piv_lu_static_square(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); relative_eq!(m, lu, epsilon = 1.0e-7) } fn full_piv_lu_solve(n: usize, nb: usize) -> bool { if n != 0 && nb != 0 { let n = cmp::min(n, 50); // To avoid slowing down the test too much. let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); let lu = m.clone().full_piv_lu(); let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); let sol1 = lu.solve(&b1); let sol2 = lu.solve(&b2); return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) } return true; } fn full_piv_lu_solve_static(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let lu = m.full_piv_lu(); let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); let sol1 = lu.solve(&b1); let sol2 = lu.solve(&b2); return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) } fn full_piv_lu_inverse(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); let mut l = m.lower_triangle(); let mut u = m.upper_triangle(); // Ensure the matrix is well conditioned for inversion. l.fill_diagonal(One::one()); u.fill_diagonal(One::one()); let m = l * u; let m1 = m.clone().full_piv_lu().try_inverse().unwrap(); let id1 = &m * &m1; let id2 = &m1 * &m; return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5); } fn full_piv_lu_inverse_static(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let lu = m.full_piv_lu(); if let Some(m1) = lu.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) } else { true } } } } } ); gen_tests!(complex, RandComplex); gen_tests!(f64, RandScalar); } /* #[test] fn swap_rows() { let mut m = Matrix5x3::new( 11.0, 12.0, 13.0, 21.0, 22.0, 23.0, 31.0, 32.0, 33.0, 41.0, 42.0, 43.0, 51.0, 52.0, 53.0); let expected = Matrix5x3::new( 11.0, 12.0, 13.0, 41.0, 42.0, 43.0, 31.0, 32.0, 33.0, 21.0, 22.0, 23.0, 51.0, 52.0, 53.0); m.swap_rows(1, 3); assert_eq!(m, expected); } #[test] fn swap_columns() { let mut m = Matrix3x5::new( 11.0, 12.0, 13.0, 14.0, 15.0, 21.0, 22.0, 23.0, 24.0, 25.0, 31.0, 32.0, 33.0, 34.0, 35.0); let expected = Matrix3x5::new( 11.0, 14.0, 13.0, 12.0, 15.0, 21.0, 24.0, 23.0, 22.0, 25.0, 31.0, 34.0, 33.0, 32.0, 35.0); m.swap_columns(1, 3); assert_eq!(m, expected); } #[test] fn remove_columns() { let m = Matrix3x5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35); let expected1 = Matrix3x4::new( 12, 13, 14, 15, 22, 23, 24, 25, 32, 33, 34, 35); let expected2 = Matrix3x4::new( 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34); let expected3 = Matrix3x4::new( 11, 12, 14, 15, 21, 22, 24, 25, 31, 32, 34, 35); assert_eq!(m.remove_column(0), expected1); assert_eq!(m.remove_column(4), expected2); assert_eq!(m.remove_column(2), expected3); let expected1 = Matrix3::new( 13, 14, 15, 23, 24, 25, 33, 34, 35); let expected2 = Matrix3::new( 11, 12, 13, 21, 22, 23, 31, 32, 33); let expected3 = Matrix3::new( 11, 12, 15, 21, 22, 25, 31, 32, 35); assert_eq!(m.remove_fixed_columns::(0), expected1); assert_eq!(m.remove_fixed_columns::(3), expected2); assert_eq!(m.remove_fixed_columns::(2), expected3); // The following is just to verify that the return type dimensions is correctly inferred. let computed: Matrix<_, U3, Dynamic, _> = m.remove_columns(3, 2); assert!(computed.eq(&expected2)); } #[test] fn remove_rows() { let m = Matrix5x3::new( 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43, 51, 52, 53); let expected1 = Matrix4x3::new( 21, 22, 23, 31, 32, 33, 41, 42, 43, 51, 52, 53); let expected2 = Matrix4x3::new( 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43); let expected3 = Matrix4x3::new( 11, 12, 13, 21, 22, 23, 41, 42, 43, 51, 52, 53); assert_eq!(m.remove_row(0), expected1); assert_eq!(m.remove_row(4), expected2); assert_eq!(m.remove_row(2), expected3); let expected1 = Matrix3::new( 31, 32, 33, 41, 42, 43, 51, 52, 53); let expected2 = Matrix3::new( 11, 12, 13, 21, 22, 23, 31, 32, 33); let expected3 = Matrix3::new( 11, 12, 13, 21, 22, 23, 51, 52, 53); assert_eq!(m.remove_fixed_rows::(0), expected1); assert_eq!(m.remove_fixed_rows::(3), expected2); assert_eq!(m.remove_fixed_rows::(2), expected3); // The following is just to verify that the return type dimensions is correctly inferred. let computed: Matrix<_, Dynamic, U3, _> = m.remove_rows(3, 2); assert!(computed.eq(&expected2)); } #[test] fn insert_columns() { let m = Matrix5x3::new( 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43, 51, 52, 53); let expected1 = Matrix5x4::new( 0, 11, 12, 13, 0, 21, 22, 23, 0, 31, 32, 33, 0, 41, 42, 43, 0, 51, 52, 53); let expected2 = Matrix5x4::new( 11, 12, 13, 0, 21, 22, 23, 0, 31, 32, 33, 0, 41, 42, 43, 0, 51, 52, 53, 0); let expected3 = Matrix5x4::new( 11, 12, 0, 13, 21, 22, 0, 23, 31, 32, 0, 33, 41, 42, 0, 43, 51, 52, 0, 53); assert_eq!(m.insert_column(0, 0), expected1); assert_eq!(m.insert_column(3, 0), expected2); assert_eq!(m.insert_column(2, 0), expected3); let expected1 = Matrix5::new( 0, 0, 11, 12, 13, 0, 0, 21, 22, 23, 0, 0, 31, 32, 33, 0, 0, 41, 42, 43, 0, 0, 51, 52, 53); let expected2 = Matrix5::new( 11, 12, 13, 0, 0, 21, 22, 23, 0, 0, 31, 32, 33, 0, 0, 41, 42, 43, 0, 0, 51, 52, 53, 0, 0); let expected3 = Matrix5::new( 11, 12, 0, 0, 13, 21, 22, 0, 0, 23, 31, 32, 0, 0, 33, 41, 42, 0, 0, 43, 51, 52, 0, 0, 53); assert_eq!(m.insert_fixed_columns::(0, 0), expected1); assert_eq!(m.insert_fixed_columns::(3, 0), expected2); assert_eq!(m.insert_fixed_columns::(2, 0), expected3); // The following is just to verify that the return type dimensions is correctly inferred. let computed: Matrix<_, U5, Dynamic, _> = m.insert_columns(3, 2, 0); assert!(computed.eq(&expected2)); } #[test] fn insert_rows() { let m = Matrix3x5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35); let expected1 = Matrix4x5::new( 0, 0, 0, 0, 0, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35); let expected2 = Matrix4x5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 0, 0, 0, 0, 0); let expected3 = Matrix4x5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 31, 32, 33, 34, 35); assert_eq!(m.insert_row(0, 0), expected1); assert_eq!(m.insert_row(3, 0), expected2); assert_eq!(m.insert_row(2, 0), expected3); let expected1 = Matrix5::new( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35); let expected2 = Matrix5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); let expected3 = Matrix5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 33, 34, 35); assert_eq!(m.insert_fixed_rows::(0, 0), expected1); assert_eq!(m.insert_fixed_rows::(3, 0), expected2); assert_eq!(m.insert_fixed_rows::(2, 0), expected3); // The following is just to verify that the return type dimensions is correctly inferred. let computed: Matrix<_, Dynamic, U5, _> = m.insert_rows(3, 2, 0); assert!(computed.eq(&expected2)); } #[test] fn resize() { let m = Matrix3x5::new( 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35); let add_add = DMatrix::from_row_slice(5, 6, &[ 11, 12, 13, 14, 15, 42, 21, 22, 23, 24, 25, 42, 31, 32, 33, 34, 35, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42]); let del_del = DMatrix::from_row_slice(1, 2, &[11, 12]); let add_del = DMatrix::from_row_slice(5, 2, &[ 11, 12, 21, 22, 31, 32, 42, 42, 42, 42]); let del_add = DMatrix::from_row_slice(1, 8, &[ 11, 12, 13, 14, 15, 42, 42, 42]); assert_eq!(del_del, m.resize(1, 2, 42)); assert_eq!(add_add, m.resize(5, 6, 42)); assert_eq!(add_del, m.resize(5, 2, 42)); assert_eq!(del_add, m.resize(1, 8, 42)); } */