use std::fmt; use num::Zero; use approx::ApproxEq; #[cfg(feature = "serde-serialize")] use serde::{Serialize, Serializer, Deserialize, Deserializer}; use alga::general::Real; use core::{Unit, ColumnVector, OwnedColumnVector, MatrixSlice, MatrixSliceMut, SquareMatrix, OwnedSquareMatrix}; use core::storage::{Storage, StorageMut}; use core::allocator::Allocator; use core::dimension::{U1, U3, U4}; use geometry::{RotationBase, OwnedRotation}; /// A quaternion with an owned storage allocated by `A`. pub type OwnedQuaternionBase = QuaternionBase>::Buffer>; /// A unit quaternion with an owned storage allocated by `A`. pub type OwnedUnitQuaternionBase = UnitQuaternionBase>::Buffer>; /// A quaternion. See the type alias `UnitQuaternionBase = Unit` for a quaternion /// that may be used as a rotation. #[repr(C)] #[derive(Hash, Debug, Copy, Clone)] pub struct QuaternionBase> { /// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order. pub coords: ColumnVector } #[cfg(feature = "serde-serialize")] impl Serialize for QuaternionBase where N: Real, S: Storage, ColumnVector: Serialize, { fn serialize(&self, serializer: T) -> Result where T: Serializer { self.coords.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'de, N, S> Deserialize<'de> for QuaternionBase where N: Real, S: Storage, ColumnVector: Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de> { ColumnVector::deserialize(deserializer).map(|x| QuaternionBase { coords: x }) } } impl Eq for QuaternionBase where N: Real + Eq, S: Storage { } impl PartialEq for QuaternionBase where N: Real, S: Storage { fn eq(&self, rhs: &Self) -> bool { self.coords == rhs.coords || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(rhs.as_vector().iter()).all(|(a, b)| *a == -*b) } } impl QuaternionBase where N: Real, S: Storage { /// Moves this quaternion into one that owns its data. #[inline] pub fn into_owned(self) -> OwnedQuaternionBase { QuaternionBase::from_vector(self.coords.into_owned()) } /// Clones this quaternion into one that owns its data. #[inline] pub fn clone_owned(&self) -> OwnedQuaternionBase { QuaternionBase::from_vector(self.coords.clone_owned()) } /// The vector part `(i, j, k)` of this quaternion. #[inline] pub fn vector(&self) -> MatrixSlice { self.coords.fixed_rows::(0) } /// The scalar part `w` of this quaternion. #[inline] pub fn scalar(&self) -> N { self.coords[3] } /// Reinterprets this quaternion as a 4D vector. #[inline] pub fn as_vector(&self) -> &ColumnVector { &self.coords } /// The norm of this quaternion. #[inline] pub fn norm(&self) -> N { self.coords.norm() } /// The squared norm of this quaternion. #[inline] pub fn norm_squared(&self) -> N { self.coords.norm_squared() } /// Normalizes this quaternion. #[inline] pub fn normalize(&self) -> OwnedQuaternionBase { QuaternionBase::from_vector(self.coords.normalize()) } /// Compute the conjugate of this quaternion. #[inline] pub fn conjugate(&self) -> OwnedQuaternionBase { let v = OwnedColumnVector::::new(-self.coords[0], -self.coords[1], -self.coords[2], self.coords[3]); QuaternionBase::from_vector(v) } /// Inverts this quaternion if it is not zero. #[inline] pub fn try_inverse(&self) -> Option> { let mut res = QuaternionBase::from_vector(self.coords.clone_owned()); if res.try_inverse_mut() { Some(res) } else { None } } /// Linear interpolation between two quaternion. #[inline] pub fn lerp(&self, other: &QuaternionBase, t: N) -> OwnedQuaternionBase where S2: Storage { self * (N::one() - t) + other * t } } impl QuaternionBase where N: Real, S: Storage, S::Alloc: Allocator { /// The polar decomposition of this quaternion. /// /// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation /// axis. If the rotation angle is zero, the rotation axis is set to `None`. pub fn polar_decomposition(&self) -> (N, N, Option>>) { if let Some((q, n)) = Unit::try_new_and_get(self.clone_owned(), N::zero()) { if let Some(axis) = Unit::try_new(self.vector().clone_owned(), N::zero()) { let angle = q.angle() / ::convert(2.0f64); (n, angle, Some(axis)) } else { (n, N::zero(), None) } } else { (N::zero(), N::zero(), None) } } /// Compute the exponential of a quaternion. #[inline] pub fn exp(&self) -> OwnedQuaternionBase { let v = self.vector(); let nn = v.norm_squared(); if relative_eq!(nn, N::zero()) { QuaternionBase::identity() } else { let w_exp = self.scalar().exp(); let n = nn.sqrt(); let nv = v * (w_exp * n.sin() / n); QuaternionBase::from_parts(n.cos(), nv) } } /// Compute the natural logarithm of a quaternion. #[inline] pub fn ln(&self) -> OwnedQuaternionBase { let n = self.norm(); let v = self.vector(); let s = self.scalar(); QuaternionBase::from_parts(n.ln(), v.normalize() * (s / n).acos()) } /// Raise the quaternion to a given floating power. #[inline] pub fn powf(&self, n: N) -> OwnedQuaternionBase { (self.ln() * n).exp() } } impl QuaternionBase where N: Real, S: StorageMut { /// Transforms this quaternion into its 4D vector form (Vector part, Scalar part). #[inline] pub fn as_vector_mut(&mut self) -> &mut ColumnVector { &mut self.coords } /// The mutable vector part `(i, j, k)` of this quaternion. #[inline] pub fn vector_mut(&mut self) -> MatrixSliceMut { self.coords.fixed_rows_mut::(0) } /// Replaces this quaternion by its conjugate. #[inline] pub fn conjugate_mut(&mut self) { self.coords[0] = -self.coords[0]; self.coords[1] = -self.coords[1]; self.coords[2] = -self.coords[2]; } /// Inverts this quaternion in-place if it is not zero. #[inline] pub fn try_inverse_mut(&mut self) -> bool { let norm_squared = self.norm_squared(); if relative_eq!(&norm_squared, &N::zero()) { false } else { self.conjugate_mut(); self.coords /= norm_squared; true } } /// Normalizes this quaternion. #[inline] pub fn normalize_mut(&mut self) -> N { self.coords.normalize_mut() } } impl ApproxEq for QuaternionBase where N: Real + ApproxEq, S: Storage { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool { self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative)) } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) || // Account for the double-covering of S², i.e. q = -q. self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps)) } } impl fmt::Display for QuaternionBase where N: Real + fmt::Display, S: Storage { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Quaternion {} − ({}, {}, {})", self[3], self[0], self[1], self[2]) } } /// A unit quaternions. May be used to represent a rotation. /// /// ///
/// /// Due to a [bug](https://github.com/rust-lang/rust/issues/32077) in rustdoc, the documentation /// below has been written manually lists only method signatures.
/// Trait implementations are not listed either. ///
///
/// /// Please refer directly to the documentation written above each function definition on the source /// code for more details. /// ///

Methods

/// /// ///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

pub type UnitQuaternionBase = Unit>; impl UnitQuaternionBase where N: Real, S: Storage { /// Moves this unit quaternion into one that owns its data. #[inline] pub fn into_owned(self) -> OwnedUnitQuaternionBase { UnitQuaternionBase::new_unchecked(self.unwrap().into_owned()) } /// Clones this unit quaternion into one that owns its data. #[inline] pub fn clone_owned(&self) -> OwnedUnitQuaternionBase { UnitQuaternionBase::new_unchecked(self.as_ref().clone_owned()) } /// The rotation angle in [0; pi] of this unit quaternion. #[inline] pub fn angle(&self) -> N { let w = self.quaternion().scalar().abs(); // Handle innacuracies that make break `.acos`. if w >= N::one() { N::zero() } else { w.acos() * ::convert(2.0f64) } } /// The underlying quaternion. /// /// Same as `self.as_ref()`. #[inline] pub fn quaternion(&self) -> &QuaternionBase { self.as_ref() } /// Compute the conjugate of this unit quaternion. #[inline] pub fn conjugate(&self) -> OwnedUnitQuaternionBase { UnitQuaternionBase::new_unchecked(self.as_ref().conjugate()) } /// Inverts this quaternion if it is not zero. #[inline] pub fn inverse(&self) -> OwnedUnitQuaternionBase { self.conjugate() } /// The rotation angle needed to make `self` and `other` coincide. #[inline] pub fn angle_to(&self, other: &UnitQuaternionBase) -> N where S2: Storage { let delta = self.rotation_to(other); delta.angle() } /// The unit quaternion needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. #[inline] pub fn rotation_to(&self, other: &UnitQuaternionBase) -> OwnedUnitQuaternionBase where S2: Storage { other / self } /// Linear interpolation between two unit quaternions. /// /// The result is not normalized. #[inline] pub fn lerp(&self, other: &UnitQuaternionBase, t: N) -> OwnedQuaternionBase where S2: Storage { self.as_ref().lerp(other.as_ref(), t) } /// Normalized linear interpolation between two unit quaternions. #[inline] pub fn nlerp(&self, other: &UnitQuaternionBase, t: N) -> OwnedUnitQuaternionBase where S2: Storage { let mut res = self.lerp(other, t); let _ = res.normalize_mut(); UnitQuaternionBase::new_unchecked(res) } /// Spherical linear interpolation between two unit quaternions. /// /// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation /// is not well-defined). #[inline] pub fn slerp(&self, other: &UnitQuaternionBase, t: N) -> OwnedUnitQuaternionBase where S2: Storage { self.try_slerp(other, t, N::zero()).expect( "Unable to perform a spherical quaternion interpolation when they \ are 180 degree apart (the result is not unique).") } /// Computes the spherical linear interpolation between two unit quaternions or returns `None` /// if both quaternions are approximately 180 degrees apart (in which case the interpolation is /// not well-defined). /// /// # Arguments /// * `self`: the first quaternion to interpolate from. /// * `other`: the second quaternion to interpolate toward. /// * `t`: the interpolation parameter. Should be between 0 and 1. /// * `epsilon`: the value bellow which the sinus of the angle separating both quaternion /// must be to return `None`. #[inline] pub fn try_slerp(&self, other: &UnitQuaternionBase, t: N, epsilon: N) -> Option> where S2: Storage { let c_hang = self.coords.dot(&other.coords); // self == other if c_hang.abs() >= N::one() { return Some(self.clone_owned()) } let hang = c_hang.acos(); let s_hang = (N::one() - c_hang * c_hang).sqrt(); // FIXME: what if s_hang is 0.0 ? The result is not well-defined. if relative_eq!(s_hang, N::zero(), epsilon = epsilon) { None } else { let ta = ((N::one() - t) * hang).sin() / s_hang; let tb = (t * hang).sin() / s_hang; let res = self.as_ref() * ta + other.as_ref() * tb; Some(UnitQuaternionBase::new_unchecked(res)) } } } impl UnitQuaternionBase where N: Real, S: StorageMut { /// Compute the conjugate of this unit quaternion in-place. #[inline] pub fn conjugate_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// Inverts this quaternion if it is not zero. #[inline] pub fn inverse_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } } impl UnitQuaternionBase where N: Real, S: Storage, S::Alloc: Allocator { /// The rotation axis of this unit quaternion or `None` if the rotation is zero. #[inline] pub fn axis(&self) -> Option>> { let v = if self.quaternion().scalar() >= N::zero() { self.as_ref().vector().clone_owned() } else { -self.as_ref().vector() }; Unit::try_new(v, N::zero()) } /// The rotation axis of this unit quaternion multiplied by the rotation agle. #[inline] pub fn scaled_axis(&self) -> OwnedColumnVector { if let Some(axis) = self.axis() { axis.unwrap() * self.angle() } else { ColumnVector::zero() } } /// Compute the exponential of a quaternion. /// /// Note that this function yields a `QuaternionBase` because it looses the unit property. #[inline] pub fn exp(&self) -> OwnedQuaternionBase { self.as_ref().exp() } /// Compute the natural logarithm of a quaternion. /// /// Note that this function yields a `QuaternionBase` because it looses the unit property. /// The vector part of the return value corresponds to the axis-angle representation (divided /// by 2.0) of this unit quaternion. #[inline] pub fn ln(&self) -> OwnedQuaternionBase { if let Some(v) = self.axis() { QuaternionBase::from_parts(N::zero(), v.unwrap() * self.angle()) } else { QuaternionBase::zero() } } /// Raise the quaternion to a given floating power. /// /// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and /// angle `self.angle() × n`. #[inline] pub fn powf(&self, n: N) -> OwnedUnitQuaternionBase { if let Some(v) = self.axis() { UnitQuaternionBase::from_axis_angle(&v, self.angle() * n) } else { UnitQuaternionBase::identity() } } } impl UnitQuaternionBase where N: Real, S: Storage, S::Alloc: Allocator { /// Builds a rotation matrix from this unit quaternion. #[inline] pub fn to_rotation_matrix(&self) -> OwnedRotation { let i = self.as_ref()[0]; let j = self.as_ref()[1]; let k = self.as_ref()[2]; let w = self.as_ref()[3]; let ww = w * w; let ii = i * i; let jj = j * j; let kk = k * k; let ij = i * j * ::convert(2.0f64); let wk = w * k * ::convert(2.0f64); let wj = w * j * ::convert(2.0f64); let ik = i * k * ::convert(2.0f64); let jk = j * k * ::convert(2.0f64); let wi = w * i * ::convert(2.0f64); RotationBase::from_matrix_unchecked( SquareMatrix::<_, U3, _>::new( ww + ii - jj - kk, ij - wk, wj + ik, wk + ij, ww - ii + jj - kk, jk - wi, ik - wj, wi + jk, ww - ii - jj + kk ) ) } /// Converts this unit quaternion into its equivalent homogeneous transformation matrix. #[inline] pub fn to_homogeneous(&self) -> OwnedSquareMatrix where S::Alloc: Allocator { self.to_rotation_matrix().to_homogeneous() } } impl fmt::Display for UnitQuaternionBase where N: Real + fmt::Display, S: Storage, S::Alloc: Allocator { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if let Some(axis) = self.axis() { let axis = axis.unwrap(); write!(f, "UnitQuaternion angle: {} − axis: ({}, {}, {})", self.angle(), axis[0], axis[1], axis[2]) } else { write!(f, "UnitQuaternion angle: {} − axis: (undefined)", self.angle()) } } } impl ApproxEq for UnitQuaternionBase where N: Real + ApproxEq, S: Storage { type Epsilon = N; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool { self.as_ref().relative_eq(other.as_ref(), epsilon, max_relative) } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } }