use std::fmt; use approx::ApproxEq; use alga::general::{ClosedMul, Real, SubsetOf}; use alga::linear::Rotation; use core::{Scalar, OwnedSquareMatrix}; use core::dimension::{DimName, DimNameSum, DimNameAdd, U1}; use core::storage::{Storage, OwnedStorage}; use core::allocator::{Allocator, OwnedAllocator}; use geometry::{PointBase, TranslationBase, IsometryBase}; /// A similarity that uses a data storage deduced from the allocator `A`. pub type OwnedSimilarityBase = SimilarityBase>::Buffer, R>; /// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation. #[repr(C)] #[derive(Hash, Debug, Clone, Copy, Serialize, Deserialize)] pub struct SimilarityBase { /// The part of this similarity that does not include the scaling factor. pub isometry: IsometryBase, scaling: N } impl SimilarityBase where N: Real, S: OwnedStorage, R: Rotation>, S::Alloc: OwnedAllocator { /// Creates a new similarity from its rotational and translational parts. #[inline] pub fn from_parts(translation: TranslationBase, rotation: R, scaling: N) -> SimilarityBase { SimilarityBase::from_isometry(IsometryBase::from_parts(translation, rotation), scaling) } /// Creates a new similarity from its rotational and translational parts. #[inline] pub fn from_isometry(isometry: IsometryBase, scaling: N) -> SimilarityBase { assert!(!relative_eq!(scaling, N::zero()), "The scaling factor must not be zero."); SimilarityBase { isometry: isometry, scaling: scaling } } /// Creates a new similarity that applies only a scaling factor. #[inline] pub fn from_scaling(scaling: N) -> SimilarityBase { Self::from_isometry(IsometryBase::identity(), scaling) } /// Inverts `self`. #[inline] pub fn inverse(&self) -> SimilarityBase { let mut res = self.clone(); res.inverse_mut(); res } /// Inverts `self` in-place. #[inline] pub fn inverse_mut(&mut self) { self.scaling = N::one() / self.scaling; self.isometry.inverse_mut(); self.isometry.translation.vector *= self.scaling; } /// The scaling factor of this similarity transformation. #[inline] pub fn set_scaling(&mut self, scaling: N) { assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero."); self.scaling = scaling; } /// The similarity transformation that applies a scaling factor `scaling` before `self`. #[inline] pub fn prepend_scaling(&self, scaling: N) -> Self { assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero."); Self::from_isometry(self.isometry.clone(), self.scaling * scaling) } /// The similarity transformation that applies a scaling factor `scaling` after `self`. #[inline] pub fn append_scaling(&self, scaling: N) -> Self { assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero."); Self::from_parts( TranslationBase::from_vector(&self.isometry.translation.vector * scaling), self.isometry.rotation.clone(), self.scaling * scaling) } /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`. #[inline] pub fn prepend_scaling_mut(&mut self, scaling: N) { assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero."); self.scaling *= scaling } /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`. #[inline] pub fn append_scaling_mut(&mut self, scaling: N) { assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero."); self.isometry.translation.vector *= scaling; self.scaling *= scaling; } /// Appends to `self` the given translation in-place. #[inline] pub fn append_translation_mut(&mut self, t: &TranslationBase) { self.isometry.append_translation_mut(t) } /// Appends to `self` the given rotation in-place. #[inline] pub fn append_rotation_mut(&mut self, r: &R) { self.isometry.append_rotation_mut(r) } /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that /// lets `p` invariant. #[inline] pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &PointBase) { self.isometry.append_rotation_wrt_point_mut(r, p) } /// Appends in-place to `self` a rotation centered at the point with coordinates /// `self.translation`. #[inline] pub fn append_rotation_wrt_center_mut(&mut self, r: &R) { self.isometry.append_rotation_wrt_center_mut(r) } } // NOTE: we don't require `R: Rotation<...>` here becaus this is not useful for the implementation // and makes it harde to use it, e.g., for Transform × Isometry implementation. // This is OK since all constructors of the isometry enforce the Rotation bound already (and // explicit struct construction is prevented by the private scaling factor). impl SimilarityBase where N: Scalar + ClosedMul, S: Storage { /// Converts this similarity into its equivalent homogeneous transformation matrix. #[inline] pub fn to_homogeneous(&self) -> OwnedSquareMatrix, S::Alloc> where D: DimNameAdd, R: SubsetOf, S::Alloc>>, S::Alloc: Allocator + Allocator, DimNameSum> { let mut res = self.isometry.to_homogeneous(); for e in res.fixed_slice_mut::(0, 0).iter_mut() { *e *= self.scaling } res } /// The scaling factor of this similarity transformation. #[inline] pub fn scaling(&self) -> N { self.scaling } } impl Eq for SimilarityBase where N: Real, S: OwnedStorage, R: Rotation> + Eq, S::Alloc: OwnedAllocator { } impl PartialEq for SimilarityBase where N: Real, S: OwnedStorage, R: Rotation> + PartialEq, S::Alloc: OwnedAllocator { #[inline] fn eq(&self, right: &SimilarityBase) -> bool { self.isometry == right.isometry && self.scaling == right.scaling } } impl ApproxEq for SimilarityBase where N: Real, S: OwnedStorage, R: Rotation> + ApproxEq, S::Alloc: OwnedAllocator, N::Epsilon: Copy { type Epsilon = N::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool { self.isometry.relative_eq(&other.isometry, epsilon, max_relative) && self.scaling.relative_eq(&other.scaling, epsilon, max_relative) } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.isometry.ulps_eq(&other.isometry, epsilon, max_ulps) && self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps) } } /* * * Display * */ impl fmt::Display for SimilarityBase where N: Real + fmt::Display, S: OwnedStorage, R: Rotation> + fmt::Display, S::Alloc: OwnedAllocator + Allocator { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let precision = f.precision().unwrap_or(3); try!(writeln!(f, "SimilarityBase {{")); try!(write!(f, "{:.*}", precision, self.isometry)); try!(write!(f, "Scaling: {:.*}", precision, self.scaling)); writeln!(f, "}}") } } /* // /* // * // * ToHomogeneous // * // */ // impl ToHomogeneous<$homogeneous> for $t { // #[inline] // fn to_homogeneous(&self) -> $homogeneous { // self.vector.to_homogeneous() // } // } // /* // * // * Absolute // * // */ // impl Absolute for $t { // type AbsoluteValue = $submatrix; // // #[inline] // fn abs(m: &$t) -> $submatrix { // Absolute::abs(&m.submatrix) // } // } */