// This module implement several methods to fill some // missing features of num-complex when it comes to randomness. use na::RealField; use num_complex::Complex; use quickcheck::{Arbitrary, Gen}; use rand::distributions::{Distribution, Standard}; use rand::Rng; #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct RandComplex<T>(pub Complex<T>); impl<T: Arbitrary + RealField> Arbitrary for RandComplex<T> { #[inline] fn arbitrary(rng: &mut Gen) -> Self { let im = Arbitrary::arbitrary(rng); let re = Arbitrary::arbitrary(rng); RandComplex(Complex::new(re, im)) } } impl<T: RealField> Distribution<RandComplex<T>> for Standard where Standard: Distribution<T>, { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandComplex<T> { let re = rng.gen(); let im = rng.gen(); RandComplex(Complex::new(re, im)) } } // This is a wrapper similar to RandComplex, but for non-complex. // This exists only to make generic tests easier to write. // // Generates variates in the range [0, 1). #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct RandScalar<T>(pub T); impl<T: Arbitrary> Arbitrary for RandScalar<T> { #[inline] fn arbitrary(rng: &mut Gen) -> Self { RandScalar(Arbitrary::arbitrary(rng)) } } impl<T: RealField> Distribution<RandScalar<T>> for Standard where Standard: Distribution<T>, { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandScalar<T> { RandScalar(self.sample(rng)) } }