#![cfg(feature = "arbitrary")] macro_rules! gen_tests( ($module: ident, $scalar: ty) => { mod $module { use std::cmp; use na::{DMatrix, Matrix2, Matrix4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; quickcheck! { fn symm_tridiagonal(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 50)); let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); let tri = m.clone().symmetric_tridiagonalize(); let recomp = tri.recompose(); relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } fn symm_tridiagonal_singular(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 4)); let mut m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); m.row_mut(n / 2).fill(na::zero()); m.column_mut(n / 2).fill(na::zero()); let tri = m.clone().symmetric_tridiagonalize(); let recomp = tri.recompose(); relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } fn symm_tridiagonal_static_square(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0).hermitian_part(); let tri = m.symmetric_tridiagonalize(); let recomp = tri.recompose(); relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } fn symm_tridiagonal_static_square_2x2(m: Matrix2<$scalar>) -> bool { let m = m.map(|e| e.0).hermitian_part(); let tri = m.symmetric_tridiagonalize(); let recomp = tri.recompose(); relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } } } } ); gen_tests!(complex, RandComplex); gen_tests!(f64, RandScalar);