#[macro_use] extern crate approx; extern crate nalgebra as na; use na::{Matrix1, Matrix2, Matrix3, Matrix5}; #[test] fn matrix1_try_inverse() { let a = Matrix1::new(3.0); let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, Matrix1::new(1.0 / 3.0)); } #[test] fn matrix2_try_inverse() { let a = Matrix2::new( 5.0, -2.0, -10.0, 1.0); let expected_inverse = Matrix2::new(-0.2 / 3.0, -2.0 / 15.0, -2.0 / 3.0, -1.0 / 3.0); let a_inv = a.try_inverse() .expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); } #[test] fn matrix3_try_inverse() { let a = Matrix3::new(-3.0, 2.0, 0.0, -6.0, 9.0, -2.0, 9.0, -6.0, 4.0); let expected_inverse = Matrix3::new(-0.40, 0.4 / 3.0, 0.2 / 3.00, -0.10, 0.2, 0.10, 0.75, 0.0, 0.25); let a_inv = a.try_inverse() .expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); } #[test] fn matrix5_try_inverse() { // Dimension 5 is chosen so that the inversion // happens by Gaussian elimination // (at the time of writing dimensions <= 3 are implemented // as analytic formulas, but we choose 5 in the case that 4 // also gets an analytic implementation) let a = Matrix5::new(-2.0, 0.0, 2.0, 5.0, -5.0, -6.0, 4.0, 4.0, 13.0, -15.0, 4.0, 16.0, -14.0, -19.0, 12.0, 12.0, 12.0, -22.0, -35.0, 34.0, -8.0, 4.0, 12.0, 27.0, -31.0); let expected_inverse = Matrix5::new( 3.9333e+00, -1.5667e+00, 2.6667e-01, 6.6667e-02, 3.0000e-01, -1.2033e+01, 3.9667e+00, -1.1167e+00, 2.8333e-01, -1.0000e-01, -1.8233e+01, 5.7667e+00, -1.5667e+00, 2.3333e-01, -2.0000e-01, -4.3333e+00, 1.6667e+00, -6.6667e-01, 3.3333e-01, -4.6950e-19, -1.3400e+01, 4.6000e+00, -1.4000e+00, 4.0000e-01, -2.0000e-01); let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse, max_relative=1e-4); } #[test] fn matrix1_try_inverse_scaled_identity() { // A perfectly invertible matrix with // very small coefficients let a = Matrix1::new(1.0e-20); let expected_inverse = Matrix1::new(1.0e20); let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); } #[test] fn matrix2_try_inverse_scaled_identity() { // A perfectly invertible matrix with // very small coefficients let a = Matrix2::new(1.0e-20, 0.0, 0.0, 1.0e-20); let expected_inverse = Matrix2::new(1.0e20, 0.0, 0.0, 1.0e20); let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); } #[test] fn matrix3_try_inverse_scaled_identity() { // A perfectly invertible matrix with // very small coefficients let a = Matrix3::new(1.0e-20, 0.0, 0.0, 0.0, 1.0e-20, 0.0, 0.0, 0.0, 1.0e-20); let expected_inverse = Matrix3::new(1.0e20, 0.0, 0.0, 0.0, 1.0e20, 0.0, 0.0, 0.0, 1.0e20); let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); } #[test] fn matrix5_try_inverse_scaled_identity() { // A perfectly invertible matrix with // very small coefficients let a = Matrix5::new(1.0e-20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e-20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e-20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e-20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e-20); let expected_inverse = Matrix5::new(1.0e+20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e+20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e+20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e+20, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0e+20);; let a_inv = a.try_inverse().expect("Matrix is invertible"); assert_relative_eq!(a_inv, expected_inverse); }