#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use num::Zero; use alga::general::ComplexField; use crate::allocator::{Allocator, Reallocator}; use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN}; use crate::constraint::{SameNumberOfRows, ShapeConstraint}; use crate::dimension::{Dim, DimMin, DimMinimum, U1}; use crate::storage::{Storage, StorageMut}; use crate::geometry::Reflection; use crate::linalg::householder; use crate::linalg::PermutationSequence; /// The QRP decomposition of a general matrix. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde(bound( serialize = "DefaultAllocator: Allocator + Allocator>, MatrixMN: Serialize, PermutationSequence>: Serialize, VectorN>: Serialize" )) )] #[cfg_attr( feature = "serde-serialize", serde(bound( deserialize = "DefaultAllocator: Allocator + Allocator>, MatrixMN: Deserialize<'de>, PermutationSequence>: Deserialize<'de>, VectorN>: Deserialize<'de>" )) )] #[derive(Clone, Debug)] pub struct QRP, C: Dim> where DefaultAllocator: Allocator + Allocator> + Allocator<(usize, usize), DimMinimum>, { qrp: MatrixMN, p: PermutationSequence>, diag: VectorN>, } impl, C: Dim> Copy for QRP where DefaultAllocator: Allocator + Allocator> + Allocator<(usize, usize), DimMinimum>, MatrixMN: Copy, PermutationSequence>: Copy, VectorN>: Copy, {} impl, C: Dim> QRP where DefaultAllocator: Allocator + Allocator + Allocator> + Allocator<(usize, usize), DimMinimum> { /// Computes the QRP decomposition using householder reflections. pub fn new(mut matrix: MatrixMN) -> Self { let (nrows, ncols) = matrix.data.shape(); let min_nrows_ncols = nrows.min(ncols); let mut p = PermutationSequence::identity_generic(min_nrows_ncols); let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) }; println!("diag: {:?}", &diag); if min_nrows_ncols.value() == 0 { return QRP { qrp: matrix, p: p, diag: diag, }; } for ite in 0..min_nrows_ncols.value() { let mut col_norm = Vec::new(); for column in matrix.column_iter() { col_norm.push(column.norm_squared()); } let piv = matrix.slice_range(ite.., ite..).icamax_full(); let col_piv = piv.1 + ite; matrix.swap_columns(ite, col_piv); p.append_permutation(ite, col_piv); householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None); println!("matrix: {:?}", &matrix.data); } QRP { qrp: matrix, p: p, diag: diag, } } /// Retrieves the upper trapezoidal submatrix `R` of this decomposition. #[inline] pub fn r(&self) -> MatrixMN, C> where DefaultAllocator: Allocator, C>, { let (nrows, ncols) = self.qrp.data.shape(); let mut res = self.qrp.rows_generic(0, nrows.min(ncols)).upper_triangle(); res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus()))); res } /// Retrieves the upper trapezoidal submatrix `R` of this decomposition. /// /// This is usually faster than `r` but consumes `self`. #[inline] pub fn unpack_r(self) -> MatrixMN, C> where DefaultAllocator: Reallocator, C>, { let (nrows, ncols) = self.qrp.data.shape(); let mut res = self.qrp.resize_generic(nrows.min(ncols), ncols, N::zero()); res.fill_lower_triangle(N::zero(), 1); res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus()))); res } /// Computes the orthogonal matrix `Q` of this decomposition. pub fn q(&self) -> MatrixMN> where DefaultAllocator: Allocator> { let (nrows, ncols) = self.qrp.data.shape(); // NOTE: we could build the identity matrix and call q_mul on it. // Instead we don't so that we take in account the matrix sparseness. let mut res = Matrix::identity_generic(nrows, nrows.min(ncols)); let dim = self.diag.len(); for i in (0..dim).rev() { let axis = self.qrp.slice_range(i.., i); // FIXME: sometimes, the axis might have a zero magnitude. let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); let mut res_rows = res.slice_range_mut(i.., i..); refl.reflect_with_sign(&mut res_rows, self.diag[i].signum()); } res } /// Retrieves the column permutation of this decomposition. #[inline] pub fn p(&self) -> &PermutationSequence> { &self.p } /// Unpacks this decomposition into its two matrix factors. pub fn unpack( self, ) -> ( MatrixMN>, MatrixMN, C>, PermutationSequence>, ) where DimMinimum: DimMin>, DefaultAllocator: Allocator> + Reallocator, C> + Allocator<(usize, usize), DimMinimum>, { (self.q(), self.r(), self.p) } #[doc(hidden)] pub fn qrp_internal(&self) -> &MatrixMN { &self.qrp } /// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition. pub fn q_tr_mul(&self, rhs: &mut Matrix) // FIXME: do we need a static constraint on the number of rows of rhs? where S2: StorageMut { let dim = self.diag.len(); for i in 0..dim { let axis = self.qrp.slice_range(i.., i); let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); let mut rhs_rows = rhs.rows_range_mut(i..); refl.reflect_with_sign(&mut rhs_rows, self.diag[i].signum().conjugate()); } } } impl> QRP where DefaultAllocator: Allocator + Allocator + Allocator<(usize, usize), DimMinimum> { /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. /// /// Returns `None` if `self` is not invertible. pub fn solve( &self, b: &Matrix, ) -> Option> where S2: StorageMut, ShapeConstraint: SameNumberOfRows, DefaultAllocator: Allocator, { let mut res = b.clone_owned(); if self.solve_mut(&mut res) { Some(res) } else { None } } /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. /// /// If the decomposed matrix is not invertible, this returns `false` and its input `b` is /// overwritten with garbage. pub fn solve_mut(&self, b: &mut Matrix) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { assert_eq!( self.qrp.nrows(), b.nrows(), "QRP solve matrix dimension mismatch." ); assert!( self.qrp.is_square(), "QRP solve: unable to solve a non-square system." ); self.q_tr_mul(b); self.solve_upper_triangular_mut(b) } // FIXME: duplicate code from the `solve` module. fn solve_upper_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let dim = self.qrp.nrows(); for k in 0..b.ncols() { let mut b = b.column_mut(k); for i in (0..dim).rev() { let coeff; unsafe { let diag = self.diag.vget_unchecked(i).modulus(); if diag.is_zero() { return false; } coeff = b.vget_unchecked(i).unscale(diag); *b.vget_unchecked_mut(i) = coeff; } b.rows_range_mut(..i) .axpy(-coeff, &self.qrp.slice_range(..i, i), N::one()); } } true } /// Computes the inverse of the decomposed matrix. /// /// Returns `None` if the decomposed matrix is not invertible. pub fn try_inverse(&self) -> Option> { assert!( self.qrp.is_square(), "QRP inverse: unable to compute the inverse of a non-square matrix." ); // FIXME: is there a less naive method ? let (nrows, ncols) = self.qrp.data.shape(); let mut res = MatrixN::identity_generic(nrows, ncols); if self.solve_mut(&mut res) { Some(res) } else { None } } /// Indicates if the decomposed matrix is invertible. pub fn is_invertible(&self) -> bool { assert!( self.qrp.is_square(), "QRP: unable to test the invertibility of a non-square matrix." ); for i in 0..self.diag.len() { if self.diag[i].is_zero() { return false; } } true } /// Computes the determinant of the decomposed matrix. pub fn determinant(&self) -> N { let dim = self.qrp.nrows(); assert!(self.qrp.is_square(), "QRP determinant: unable to compute the determinant of a non-square matrix."); let mut res = N::one(); for i in 0 .. dim { res *= unsafe { *self.diag.vget_unchecked(i) }; } res * self.p.determinant() } } impl, C: Dim, S: Storage> Matrix where DefaultAllocator: Allocator + Allocator + Allocator> + Allocator<(usize, usize), DimMinimum> { /// Computes the QRP decomposition of this matrix. pub fn qrp(self) -> QRP { QRP::new(self.into_owned()) } }