#[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use rand::distributions::{Distribution, Standard}; use rand::Rng; #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; use std::fmt; use std::mem; use simba::scalar::RealField; use crate::base::dimension::U3; use crate::base::helper; use crate::base::storage::Storage; use crate::base::{Matrix4, Vector, Vector3}; use crate::geometry::{Point3, Projective3}; /// A 3D orthographic projection stored as a homogeneous 4x4 matrix. pub struct Orthographic3 { matrix: Matrix4, } impl Copy for Orthographic3 {} impl Clone for Orthographic3 { #[inline] fn clone(&self) -> Self { Self::from_matrix_unchecked(self.matrix.clone()) } } impl fmt::Debug for Orthographic3 { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { self.matrix.fmt(f) } } impl PartialEq for Orthographic3 { #[inline] fn eq(&self, right: &Self) -> bool { self.matrix == right.matrix } } #[cfg(feature = "serde-serialize")] impl Serialize for Orthographic3 { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.matrix.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'a, N: RealField + Deserialize<'a>> Deserialize<'a> for Orthographic3 { fn deserialize(deserializer: Des) -> Result where Des: Deserializer<'a>, { let matrix = Matrix4::::deserialize(deserializer)?; Ok(Self::from_matrix_unchecked(matrix)) } } impl Orthographic3 { /// Creates a new orthographic projection matrix. /// /// This follows the OpenGL convention, so this will flip the `z` axis. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Point3}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// // Check this projection actually transforms the view cuboid into the double-unit cube. /// // See https://www.nalgebra.org/projections/#orthographic-projection for more details. /// let p1 = Point3::new(1.0, 2.0, -0.1); /// let p2 = Point3::new(1.0, 2.0, -1000.0); /// let p3 = Point3::new(1.0, 20.0, -0.1); /// let p4 = Point3::new(1.0, 20.0, -1000.0); /// let p5 = Point3::new(10.0, 2.0, -0.1); /// let p6 = Point3::new(10.0, 2.0, -1000.0); /// let p7 = Point3::new(10.0, 20.0, -0.1); /// let p8 = Point3::new(10.0, 20.0, -1000.0); /// /// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0)); /// /// // This also works with flipped axis. In other words, we allow that /// // `left > right`, `bottom > top`, and/or `znear > zfar`. /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// /// assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0)); /// ``` #[inline] pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self { let matrix = Matrix4::::identity(); let mut res = Self::from_matrix_unchecked(matrix); res.set_left_and_right(left, right); res.set_bottom_and_top(bottom, top); res.set_znear_and_zfar(znear, zfar); res } /// Wraps the given matrix to interpret it as a 3D orthographic matrix. /// /// It is not checked whether or not the given matrix actually represents an orthographic /// projection. /// /// # Example /// ``` /// # use nalgebra::{Orthographic3, Point3, Matrix4}; /// let mat = Matrix4::new( /// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, /// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, /// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, /// 0.0, 0.0, 0.0, 1.0 /// ); /// let proj = Orthographic3::from_matrix_unchecked(mat); /// assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0)); /// ``` #[inline] pub fn from_matrix_unchecked(matrix: Matrix4) -> Self { Self { matrix } } /// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view. #[inline] pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self { assert!( znear != zfar, "The far plane must not be equal to the near plane." ); assert!( !relative_eq!(aspect, N::zero()), "The aspect ratio must not be zero." ); let half: N = crate::convert(0.5); let width = zfar * (vfov * half).tan(); let height = width / aspect; Self::new( -width * half, width * half, -height * half, height * half, znear, zfar, ) } /// Retrieves the inverse of the underlying homogeneous matrix. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Point3, Matrix4}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// let inv = proj.inverse(); /// /// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); /// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity()); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// let inv = proj.inverse(); /// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); /// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity()); /// ``` #[inline] pub fn inverse(&self) -> Matrix4 { let mut res = self.to_homogeneous(); let inv_m11 = N::one() / self.matrix[(0, 0)]; let inv_m22 = N::one() / self.matrix[(1, 1)]; let inv_m33 = N::one() / self.matrix[(2, 2)]; res[(0, 0)] = inv_m11; res[(1, 1)] = inv_m22; res[(2, 2)] = inv_m33; res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11; res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22; res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33; res } /// Computes the corresponding homogeneous matrix. /// /// # Example /// ``` /// # use nalgebra::{Orthographic3, Point3, Matrix4}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// let expected = Matrix4::new( /// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, /// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, /// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, /// 0.0, 0.0, 0.0, 1.0 /// ); /// assert_eq!(proj.to_homogeneous(), expected); /// ``` #[inline] pub fn to_homogeneous(&self) -> Matrix4 { self.matrix } /// A reference to the underlying homogeneous transformation matrix. /// /// # Example /// ``` /// # use nalgebra::{Orthographic3, Point3, Matrix4}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// let expected = Matrix4::new( /// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, /// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, /// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, /// 0.0, 0.0, 0.0, 1.0 /// ); /// assert_eq!(*proj.as_matrix(), expected); /// ``` #[inline] pub fn as_matrix(&self) -> &Matrix4 { &self.matrix } /// A reference to this transformation seen as a `Projective3`. /// /// # Example /// ``` /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous()); /// ``` #[inline] pub fn as_projective(&self) -> &Projective3 { unsafe { mem::transmute(self) } } /// This transformation seen as a `Projective3`. /// /// # Example /// ``` /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous()); /// ``` #[inline] pub fn to_projective(&self) -> Projective3 { Projective3::from_matrix_unchecked(self.matrix) } /// Retrieves the underlying homogeneous matrix. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Point3, Matrix4}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// let expected = Matrix4::new( /// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, /// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, /// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, /// 0.0, 0.0, 0.0, 1.0 /// ); /// assert_eq!(proj.into_inner(), expected); /// ``` #[inline] pub fn into_inner(self) -> Matrix4 { self.matrix } /// Retrieves the underlying homogeneous matrix. /// Deprecated: Use [Orthographic3::into_inner] instead. #[deprecated(note = "use `.into_inner()` instead")] #[inline] pub fn unwrap(self) -> Matrix4 { self.matrix } /// The left offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn left(&self) -> N { (-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The right offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn right(&self) -> N { (N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The bottom offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn bottom(&self) -> N { (-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The top offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn top(&self) -> N { (N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The near plane offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn znear(&self) -> N { (N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } /// The far plane offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6); /// /// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); /// assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6); /// ``` #[inline] pub fn zfar(&self) -> N { (-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a point. Faster than matrix multiplication. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Point3}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// /// let p1 = Point3::new(1.0, 2.0, -0.1); /// let p2 = Point3::new(1.0, 2.0, -1000.0); /// let p3 = Point3::new(1.0, 20.0, -0.1); /// let p4 = Point3::new(1.0, 20.0, -1000.0); /// let p5 = Point3::new(10.0, 2.0, -0.1); /// let p6 = Point3::new(10.0, 2.0, -1000.0); /// let p7 = Point3::new(10.0, 20.0, -0.1); /// let p8 = Point3::new(10.0, 20.0, -1000.0); /// /// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); /// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); /// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0)); /// ``` #[inline] pub fn project_point(&self, p: &Point3) -> Point3 { Point3::new( self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)], self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)], self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)], ) } /// Un-projects a point. Faster than multiplication by the underlying matrix inverse. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Point3}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// /// let p1 = Point3::new(-1.0, -1.0, -1.0); /// let p2 = Point3::new(-1.0, -1.0, 1.0); /// let p3 = Point3::new(-1.0, 1.0, -1.0); /// let p4 = Point3::new(-1.0, 1.0, 1.0); /// let p5 = Point3::new( 1.0, -1.0, -1.0); /// let p6 = Point3::new( 1.0, -1.0, 1.0); /// let p7 = Point3::new( 1.0, 1.0, -1.0); /// let p8 = Point3::new( 1.0, 1.0, 1.0); /// /// assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6); /// assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn unproject_point(&self, p: &Point3) -> Point3 { Point3::new( (p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)], (p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)], (p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)], ) } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a vector. Faster than matrix multiplication. /// /// Vectors are not affected by the translation part of the projection. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Orthographic3, Vector3}; /// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// /// let v1 = Vector3::x(); /// let v2 = Vector3::y(); /// let v3 = Vector3::z(); /// /// assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0); /// assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0); /// assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9); /// ``` #[inline] pub fn project_vector(&self, p: &Vector) -> Vector3 where SB: Storage, { Vector3::new( self.matrix[(0, 0)] * p[0], self.matrix[(1, 1)] * p[1], self.matrix[(2, 2)] * p[2], ) } /// Sets the left offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_left(2.0); /// assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6); /// /// // It is OK to set a left offset greater than the current right offset. /// proj.set_left(20.0); /// assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_left(&mut self, left: N) { let right = self.right(); self.set_left_and_right(left, right); } /// Sets the right offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_right(15.0); /// assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6); /// /// // It is OK to set a right offset smaller than the current left offset. /// proj.set_right(-3.0); /// assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_right(&mut self, right: N) { let left = self.left(); self.set_left_and_right(left, right); } /// Sets the bottom offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_bottom(8.0); /// assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6); /// /// // It is OK to set a bottom offset greater than the current top offset. /// proj.set_bottom(50.0); /// assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_bottom(&mut self, bottom: N) { let top = self.top(); self.set_bottom_and_top(bottom, top); } /// Sets the top offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_top(15.0); /// assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6); /// /// // It is OK to set a top offset smaller than the current bottom offset. /// proj.set_top(-3.0); /// assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_top(&mut self, top: N) { let bottom = self.bottom(); self.set_bottom_and_top(bottom, top); } /// Sets the near plane offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_znear(8.0); /// assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6); /// /// // It is OK to set a znear greater than the current zfar. /// proj.set_znear(5000.0); /// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_znear(&mut self, znear: N) { let zfar = self.zfar(); self.set_znear_and_zfar(znear, zfar); } /// Sets the far plane offset of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_zfar(15.0); /// assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6); /// /// // It is OK to set a zfar smaller than the current znear. /// proj.set_zfar(-3.0); /// assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_zfar(&mut self, zfar: N) { let znear = self.znear(); self.set_znear_and_zfar(znear, zfar); } /// Sets the view cuboid offsets along the `x` axis. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_left_and_right(7.0, 70.0); /// assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6); /// /// // It is also OK to have `left > right`. /// proj.set_left_and_right(70.0, 7.0); /// assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_left_and_right(&mut self, left: N, right: N) { assert!( left != right, "The left corner must not be equal to the right corner." ); self.matrix[(0, 0)] = crate::convert::<_, N>(2.0) / (right - left); self.matrix[(0, 3)] = -(right + left) / (right - left); } /// Sets the view cuboid offsets along the `y` axis. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_bottom_and_top(7.0, 70.0); /// assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6); /// /// // It is also OK to have `bottom > top`. /// proj.set_bottom_and_top(70.0, 7.0); /// assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_bottom_and_top(&mut self, bottom: N, top: N) { assert!( bottom != top, "The top corner must not be equal to the bottom corner." ); self.matrix[(1, 1)] = crate::convert::<_, N>(2.0) / (top - bottom); self.matrix[(1, 3)] = -(top + bottom) / (top - bottom); } /// Sets the near and far plane offsets of the view cuboid. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Orthographic3; /// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); /// proj.set_znear_and_zfar(50.0, 5000.0); /// assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6); /// /// // It is also OK to have `znear > zfar`. /// proj.set_znear_and_zfar(5000.0, 0.5); /// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6); /// assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6); /// ``` #[inline] pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) { assert!( zfar != znear, "The near-plane and far-plane must not be superimposed." ); self.matrix[(2, 2)] = -crate::convert::<_, N>(2.0) / (zfar - znear); self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear); } } impl Distribution> for Standard where Standard: Distribution, { fn sample(&self, r: &mut R) -> Orthographic3 { let left = r.gen(); let right = helper::reject_rand(r, |x: &N| *x > left); let bottom = r.gen(); let top = helper::reject_rand(r, |x: &N| *x > bottom); let znear = r.gen(); let zfar = helper::reject_rand(r, |x: &N| *x > znear); Orthographic3::new(left, right, bottom, top, znear, zfar) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Orthographic3 where Matrix4: Send, { fn arbitrary(g: &mut G) -> Self { let left = Arbitrary::arbitrary(g); let right = helper::reject(g, |x: &N| *x > left); let bottom = Arbitrary::arbitrary(g); let top = helper::reject(g, |x: &N| *x > bottom); let znear = Arbitrary::arbitrary(g); let zfar = helper::reject(g, |x: &N| *x > znear); Self::new(left, right, bottom, top, znear, zfar) } } impl From> for Matrix4 { #[inline] fn from(orth: Orthographic3) -> Self { orth.into_inner() } }