//! Sparsity patterns for CSR and CSC matrices. use crate::cs::transpose_cs; use crate::SparseFormatError; use std::error::Error; use std::fmt; /// A representation of the sparsity pattern of a CSR or CSC matrix. /// /// CSR and CSC matrices store matrices in a very similar fashion. In fact, in a certain sense, /// they are transposed. More precisely, when reinterpreting the three data arrays of a CSR /// matrix as a CSC matrix, we obtain the CSC representation of its transpose. /// /// [`SparsityPattern`] is an abstraction built on this observation. Whereas CSR matrices /// store a matrix row-by-row, and a CSC matrix stores a matrix column-by-column, a /// `SparsityPattern` represents only the index data structure of a matrix *lane-by-lane*. /// Here, a *lane* is a generalization of rows and columns. We further define *major lanes* /// and *minor lanes*. The sparsity pattern of a CSR matrix is then obtained by interpreting /// major/minor as row/column. Conversely, we obtain the sparsity pattern of a CSC matrix by /// interpreting major/minor as column/row. /// /// This allows us to use a common abstraction to talk about sparsity patterns of CSR and CSC /// matrices. This is convenient, because at the abstract level, the invariants of the formats /// are the same. Hence we may encode the invariants of the index data structure separately from /// the scalar values of the matrix. This is especially useful in applications where the /// sparsity pattern is built ahead of the matrix values, or the same sparsity pattern is re-used /// between different matrices. Finally, we can use `SparsityPattern` to encode adjacency /// information in graphs. /// /// # Format /// /// The format is exactly the same as for the index data structures of CSR and CSC matrices. /// This means that the sparsity pattern of an `m x n` sparse matrix with `nnz` non-zeros, /// where in this case `m x n` does *not* mean `rows x columns`, but rather `majors x minors`, /// is represented by the following two arrays: /// /// - `major_offsets`, an array of integers with length `m + 1`. /// - `minor_indices`, an array of integers with length `nnz`. /// /// The invariants and relationship between `major_offsets` and `minor_indices` remain the same /// as for `row_offsets` and `col_indices` in the [CSR](`crate::csr::CsrMatrix`) format /// specification. #[derive(Debug, Clone, PartialEq, Eq)] // TODO: Make SparsityPattern parametrized by index type // (need a solid abstraction for index types though) pub struct SparsityPattern { major_offsets: Vec, minor_indices: Vec, minor_dim: usize, } impl SparsityPattern { /// Create a sparsity pattern of the given dimensions without explicitly stored entries. pub fn zeros(major_dim: usize, minor_dim: usize) -> Self { Self { major_offsets: vec![0; major_dim + 1], minor_indices: vec![], minor_dim, } } /// The offsets for the major dimension. #[inline] pub fn major_offsets(&self) -> &[usize] { &self.major_offsets } /// The indices for the minor dimension. #[inline] pub fn minor_indices(&self) -> &[usize] { &self.minor_indices } /// The number of major lanes in the pattern. #[inline] pub fn major_dim(&self) -> usize { assert!(self.major_offsets.len() > 0); self.major_offsets.len() - 1 } /// The number of minor lanes in the pattern. #[inline] pub fn minor_dim(&self) -> usize { self.minor_dim } /// The number of "non-zeros", i.e. explicitly stored entries in the pattern. #[inline] pub fn nnz(&self) -> usize { self.minor_indices.len() } /// Get the lane at the given index. /// /// Panics /// ------ /// /// Panics if `major_index` is out of bounds. #[inline] pub fn lane(&self, major_index: usize) -> &[usize] { self.get_lane(major_index).unwrap() } /// Get the lane at the given index, or `None` if out of bounds. #[inline] pub fn get_lane(&self, major_index: usize) -> Option<&[usize]> { let offset_begin = *self.major_offsets().get(major_index)?; let offset_end = *self.major_offsets().get(major_index + 1)?; Some(&self.minor_indices()[offset_begin..offset_end]) } /// Try to construct a sparsity pattern from the given dimensions, major offsets /// and minor indices. /// /// Returns an error if the data does not conform to the requirements. pub fn try_from_offsets_and_indices( major_dim: usize, minor_dim: usize, major_offsets: Vec, minor_indices: Vec, ) -> Result { use SparsityPatternFormatError::*; if major_offsets.len() != major_dim + 1 { return Err(InvalidOffsetArrayLength); } // Check that the first and last offsets conform to the specification { let first_offset_ok = *major_offsets.first().unwrap() == 0; let last_offset_ok = *major_offsets.last().unwrap() == minor_indices.len(); if !first_offset_ok || !last_offset_ok { return Err(InvalidOffsetFirstLast); } } // Test that each lane has strictly monotonically increasing minor indices, i.e. // minor indices within a lane are sorted, unique. In addition, each minor index // must be in bounds with respect to the minor dimension. { for lane_idx in 0..major_dim { let range_start = major_offsets[lane_idx]; let range_end = major_offsets[lane_idx + 1]; // Test that major offsets are monotonically increasing if range_start > range_end { return Err(NonmonotonicOffsets); } let minor_indices = &minor_indices[range_start..range_end]; // We test for in-bounds, uniqueness and monotonicity at the same time // to ensure that we only visit each minor index once let mut iter = minor_indices.iter(); let mut prev = None; while let Some(next) = iter.next().copied() { if next >= minor_dim { return Err(MinorIndexOutOfBounds); } if let Some(prev) = prev { if prev > next { return Err(NonmonotonicMinorIndices); } else if prev == next { return Err(DuplicateEntry); } } prev = Some(next); } } } Ok(Self { major_offsets, minor_indices, minor_dim, }) } /// An iterator over the explicitly stored "non-zero" entries (i, j). /// /// The iteration happens in a lane-major fashion, meaning that the lane index i /// increases monotonically, and the minor index j increases monotonically within each /// lane i. /// /// Examples /// -------- /// /// ``` /// # use nalgebra_sparse::pattern::SparsityPattern; /// let offsets = vec![0, 2, 3, 4]; /// let minor_indices = vec![0, 2, 1, 0]; /// let pattern = SparsityPattern::try_from_offsets_and_indices(3, 4, offsets, minor_indices) /// .unwrap(); /// /// let entries: Vec<_> = pattern.entries().collect(); /// assert_eq!(entries, vec![(0, 0), (0, 2), (1, 1), (2, 0)]); /// ``` /// pub fn entries(&self) -> SparsityPatternIter { SparsityPatternIter::from_pattern(self) } /// Returns the raw offset and index data for the sparsity pattern. /// /// Examples /// -------- /// /// ``` /// # use nalgebra_sparse::pattern::SparsityPattern; /// let offsets = vec![0, 2, 3, 4]; /// let minor_indices = vec![0, 2, 1, 0]; /// let pattern = SparsityPattern::try_from_offsets_and_indices( /// 3, /// 4, /// offsets.clone(), /// minor_indices.clone()) /// .unwrap(); /// let (offsets2, minor_indices2) = pattern.disassemble(); /// assert_eq!(offsets2, offsets); /// assert_eq!(minor_indices2, minor_indices); /// ``` pub fn disassemble(self) -> (Vec, Vec) { (self.major_offsets, self.minor_indices) } /// Computes the transpose of the sparsity pattern. /// /// This is analogous to matrix transposition, i.e. an entry `(i, j)` becomes `(j, i)` in the /// new pattern. pub fn transpose(&self) -> Self { // By using unit () values, we can use the same routines as for CSR/CSC matrices let values = vec![(); self.nnz()]; let (new_offsets, new_indices, _) = transpose_cs( self.major_dim(), self.minor_dim(), self.major_offsets(), self.minor_indices(), &values, ); // TODO: Skip checks Self::try_from_offsets_and_indices( self.minor_dim(), self.major_dim(), new_offsets, new_indices, ) .expect("Internal error: Transpose should never fail.") } } /// Error type for `SparsityPattern` format errors. #[non_exhaustive] #[derive(Debug, PartialEq, Eq)] pub enum SparsityPatternFormatError { /// Indicates an invalid number of offsets. /// /// The number of offsets must be equal to (major_dim + 1). InvalidOffsetArrayLength, /// Indicates that the first or last entry in the offset array did not conform to /// specifications. /// /// The first entry must be 0, and the last entry must be exactly one greater than the /// major dimension. InvalidOffsetFirstLast, /// Indicates that the major offsets are not monotonically increasing. NonmonotonicOffsets, /// One or more minor indices are out of bounds. MinorIndexOutOfBounds, /// One or more duplicate entries were detected. /// /// Two entries are considered duplicates if they are part of the same major lane and have /// the same minor index. DuplicateEntry, /// Indicates that minor indices are not monotonically increasing within each lane. NonmonotonicMinorIndices, } impl From for SparseFormatError { fn from(err: SparsityPatternFormatError) -> Self { use crate::SparseFormatErrorKind; use crate::SparseFormatErrorKind::*; use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry; use SparsityPatternFormatError::*; match err { InvalidOffsetArrayLength | InvalidOffsetFirstLast | NonmonotonicOffsets | NonmonotonicMinorIndices => { SparseFormatError::from_kind_and_error(InvalidStructure, Box::from(err)) } MinorIndexOutOfBounds => { SparseFormatError::from_kind_and_error(IndexOutOfBounds, Box::from(err)) } PatternDuplicateEntry => SparseFormatError::from_kind_and_error( #[allow(unused_qualifications)] SparseFormatErrorKind::DuplicateEntry, Box::from(err), ), } } } impl fmt::Display for SparsityPatternFormatError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { SparsityPatternFormatError::InvalidOffsetArrayLength => { write!(f, "Length of offset array is not equal to (major_dim + 1).") } SparsityPatternFormatError::InvalidOffsetFirstLast => { write!(f, "First or last offset is incompatible with format.") } SparsityPatternFormatError::NonmonotonicOffsets => { write!(f, "Offsets are not monotonically increasing.") } SparsityPatternFormatError::MinorIndexOutOfBounds => { write!(f, "A minor index is out of bounds.") } SparsityPatternFormatError::DuplicateEntry => { write!(f, "Input data contains duplicate entries.") } SparsityPatternFormatError::NonmonotonicMinorIndices => { write!( f, "Minor indices are not monotonically increasing within each lane." ) } } } } impl Error for SparsityPatternFormatError {} /// Iterator type for iterating over entries in a sparsity pattern. #[derive(Debug, Clone)] pub struct SparsityPatternIter<'a> { // See implementation of Iterator::next for an explanation of how these members are used major_offsets: &'a [usize], minor_indices: &'a [usize], current_lane_idx: usize, remaining_minors_in_lane: &'a [usize], } impl<'a> SparsityPatternIter<'a> { fn from_pattern(pattern: &'a SparsityPattern) -> Self { let first_lane_end = pattern.major_offsets().get(1).unwrap_or(&0); let minors_in_first_lane = &pattern.minor_indices()[0..*first_lane_end]; Self { major_offsets: pattern.major_offsets(), minor_indices: pattern.minor_indices(), current_lane_idx: 0, remaining_minors_in_lane: minors_in_first_lane, } } } impl<'a> Iterator for SparsityPatternIter<'a> { type Item = (usize, usize); #[inline] fn next(&mut self) -> Option { // We ensure fast iteration across each lane by iteratively "draining" a slice // corresponding to the remaining column indices in the particular lane. // When we reach the end of this slice, we are at the end of a lane, // and we must do some bookkeeping for preparing the iteration of the next lane // (or stop iteration if we're through all lanes). // This way we can avoid doing unnecessary bookkeeping on every iteration, // instead paying a small price whenever we jump to a new lane. if let Some(minor_idx) = self.remaining_minors_in_lane.first() { let item = Some((self.current_lane_idx, *minor_idx)); self.remaining_minors_in_lane = &self.remaining_minors_in_lane[1..]; item } else { loop { // Keep skipping lanes until we found a non-empty lane or there are no more lanes if self.current_lane_idx + 2 >= self.major_offsets.len() { // We've processed all lanes, so we're at the end of the iterator // (note: keep in mind that offsets.len() == major_dim() + 1, hence we need +2) return None; } else { // Bump lane index and check if the lane is non-empty self.current_lane_idx += 1; let lower = self.major_offsets[self.current_lane_idx]; let upper = self.major_offsets[self.current_lane_idx + 1]; if upper > lower { self.remaining_minors_in_lane = &self.minor_indices[(lower + 1)..upper]; return Some((self.current_lane_idx, self.minor_indices[lower])); } } } } } }