//! Matrix with dimensions unknown at compile-time. #![allow(missing_doc)] // we hide doc to not have to document the $trhs double dispatch trait. use std::rand::Rand; use std::rand; use std::num::{One, Zero}; use traits::operations::ApproxEq; use std::mem; use structs::dvec::{DVec, DVecMulRhs}; use traits::operations::{Inv, Transpose, Mean, Cov}; use traits::structure::{Cast, ColSlice, RowSlice, Eye, Indexable}; use std::fmt::{Show, Formatter, Result}; /// Matrix with dimensions unknown at compile-time. #[deriving(Eq, PartialEq, Clone)] pub struct DMat { nrows: uint, ncols: uint, mij: Vec } double_dispatch_binop_decl_trait!(DMat, DMatMulRhs) double_dispatch_binop_decl_trait!(DMat, DMatDivRhs) double_dispatch_binop_decl_trait!(DMat, DMatAddRhs) double_dispatch_binop_decl_trait!(DMat, DMatSubRhs) mul_redispatch_impl!(DMat, DMatMulRhs) div_redispatch_impl!(DMat, DMatDivRhs) add_redispatch_impl!(DMat, DMatAddRhs) sub_redispatch_impl!(DMat, DMatSubRhs) impl DMat { /// Creates an uninitialized matrix. #[inline] pub unsafe fn new_uninitialized(nrows: uint, ncols: uint) -> DMat { let mut vec = Vec::with_capacity(nrows * ncols); vec.set_len(nrows * ncols); DMat { nrows: nrows, ncols: ncols, mij: vec } } } impl DMat { /// Builds a matrix filled with zeros. /// /// # Arguments /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` /// components. #[inline] pub fn new_zeros(nrows: uint, ncols: uint) -> DMat { DMat::from_elem(nrows, ncols, Zero::zero()) } /// Tests if all components of the matrix are zeroes. #[inline] pub fn is_zero(&self) -> bool { self.mij.iter().all(|e| e.is_zero()) } #[inline] pub fn reset(&mut self) { for mij in self.mij.mut_iter() { *mij = Zero::zero(); } } } impl DMat { /// Builds a matrix filled with random values. #[inline] pub fn new_random(nrows: uint, ncols: uint) -> DMat { DMat::from_fn(nrows, ncols, |_, _| rand::random()) } } impl DMat { /// Builds a matrix filled with a given constant. #[inline] pub fn new_ones(nrows: uint, ncols: uint) -> DMat { DMat::from_elem(nrows, ncols, One::one()) } } impl DMat { /// Builds a matrix filled with a given constant. #[inline] pub fn from_elem(nrows: uint, ncols: uint, val: N) -> DMat { DMat { nrows: nrows, ncols: ncols, mij: Vec::from_elem(nrows * ncols, val) } } /// Builds a matrix filled with the components provided by a vector. /// The vector contains the matrix data in row-major order. /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data /// in column-major order. /// /// The vector must have at least `nrows * ncols` elements. #[inline] pub fn from_row_vec(nrows: uint, ncols: uint, vec: &[N]) -> DMat { let mut res = DMat::from_col_vec(ncols, nrows, vec); // we transpose because the buffer is row_major res.transpose(); res } /// Builds a matrix filled with the components provided by a vector. /// The vector contains the matrix data in column-major order. /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data /// in column-major order. /// /// The vector must have at least `nrows * ncols` elements. #[inline] pub fn from_col_vec(nrows: uint, ncols: uint, vec: &[N]) -> DMat { assert!(nrows * ncols == vec.len()); DMat { nrows: nrows, ncols: ncols, mij: Vec::from_slice(vec) } } } impl DMat { /// Builds a matrix filled with a given constant. #[inline(always)] pub fn from_fn(nrows: uint, ncols: uint, f: |uint, uint| -> N) -> DMat { DMat { nrows: nrows, ncols: ncols, mij: Vec::from_fn(nrows * ncols, |i| { let m = i % ncols; f(m, m - i * ncols) }) } } /// The number of row on the matrix. #[inline] pub fn nrows(&self) -> uint { self.nrows } /// The number of columns on the matrix. #[inline] pub fn ncols(&self) -> uint { self.ncols } /// Transforms this matrix into an array. This consumes the matrix and is O(1). /// The returned vector contains the matrix data in column-major order. #[inline] pub fn to_vec(self) -> Vec { self.mij } /// Gets a reference to this matrix data. /// The returned vector contains the matrix data in column-major order. #[inline] pub fn as_vec<'r>(&'r self) -> &'r [N] { self.mij.as_slice() } /// Gets a mutable reference to this matrix data. /// The returned vector contains the matrix data in column-major order. #[inline] pub fn as_mut_vec<'r>(&'r mut self) -> &'r mut [N] { self.mij.as_mut_slice() } } // FIXME: add a function to modify the dimension (to avoid useless allocations)? impl Eye for DMat { /// Builds an identity matrix. /// /// # Arguments /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` /// components. #[inline] fn new_identity(dim: uint) -> DMat { let mut res = DMat::new_zeros(dim, dim); for i in range(0u, dim) { let _1: N = One::one(); res.set((i, i), _1); } res } } impl DMat { #[inline(always)] fn offset(&self, i: uint, j: uint) -> uint { i + j * self.nrows } } impl Indexable<(uint, uint), N> for DMat { /// Changes the value of a component of the matrix. /// /// # Arguments /// * `rowcol` - 0-based tuple (row, col) to be changed #[inline] fn set(&mut self, rowcol: (uint, uint), val: N) { let (row, col) = rowcol; assert!(row < self.nrows); assert!(col < self.ncols); let offset = self.offset(row, col); *self.mij.get_mut(offset) = val } /// Just like `set` without bounds checking. #[inline] unsafe fn unsafe_set(&mut self, rowcol: (uint, uint), val: N) { let (row, col) = rowcol; let offset = self.offset(row, col); *self.mij.as_mut_slice().unsafe_mut_ref(offset) = val } /// Reads the value of a component of the matrix. /// /// # Arguments /// * `rowcol` - 0-based tuple (row, col) to be read #[inline] fn at(&self, rowcol: (uint, uint)) -> N { let (row, col) = rowcol; assert!(row < self.nrows); assert!(col < self.ncols); unsafe { self.unsafe_at((row, col)) } } /// Just like `at` without bounds checking. #[inline] unsafe fn unsafe_at(&self, rowcol: (uint, uint)) -> N { let (row, col) = rowcol; (*self.mij.as_slice().unsafe_ref(self.offset(row, col))).clone() } #[inline] fn swap(&mut self, rowcol1: (uint, uint), rowcol2: (uint, uint)) { let (row1, col1) = rowcol1; let (row2, col2) = rowcol2; let offset1 = self.offset(row1, col1); let offset2 = self.offset(row2, col2); let count = self.mij.len(); assert!(offset1 < count); assert!(offset2 < count); self.mij.as_mut_slice().swap(offset1, offset2); } fn shape(&self) -> (uint, uint) { (self.nrows, self.ncols) } } impl + Add + Zero> DMatMulRhs> for DMat { fn binop(left: &DMat, right: &DMat) -> DMat { assert!(left.ncols == right.nrows); let mut res = unsafe { DMat::new_uninitialized(left.nrows, right.ncols) }; for i in range(0u, left.nrows) { for j in range(0u, right.ncols) { let mut acc: N = Zero::zero(); unsafe { for k in range(0u, left.ncols) { acc = acc + left.unsafe_at((i, k)) * right.unsafe_at((k, j)); } res.unsafe_set((i, j), acc); } } } res } } impl + Mul + Zero> DMatMulRhs> for DVec { fn binop(left: &DMat, right: &DVec) -> DVec { assert!(left.ncols == right.at.len()); let mut res : DVec = unsafe { DVec::new_uninitialized(left.nrows) }; for i in range(0u, left.nrows) { let mut acc: N = Zero::zero(); for j in range(0u, left.ncols) { unsafe { acc = acc + left.unsafe_at((i, j)) * right.unsafe_at(j); } } *res.at.get_mut(i) = acc; } res } } impl + Mul + Zero> DVecMulRhs> for DMat { fn binop(left: &DVec, right: &DMat) -> DVec { assert!(right.nrows == left.at.len()); let mut res : DVec = unsafe { DVec::new_uninitialized(right.ncols) }; for i in range(0u, right.ncols) { let mut acc: N = Zero::zero(); for j in range(0u, right.nrows) { unsafe { acc = acc + left.unsafe_at(j) * right.unsafe_at((j, i)); } } *res.at.get_mut(i) = acc; } res } } impl Inv for DMat { #[inline] fn inv_cpy(m: &DMat) -> Option> { let mut res : DMat = m.clone(); if res.inv() { Some(res) } else { None } } fn inv(&mut self) -> bool { assert!(self.nrows == self.ncols); let dim = self.nrows; let mut res: DMat = Eye::new_identity(dim); let _0T: N = Zero::zero(); // inversion using Gauss-Jordan elimination for k in range(0u, dim) { // search a non-zero value on the k-th column // FIXME: would it be worth it to spend some more time searching for the // max instead? let mut n0 = k; // index of a non-zero entry while n0 != dim { if unsafe { self.unsafe_at((n0, k)) } != _0T { break; } n0 = n0 + 1; } if n0 == dim { return false } // swap pivot line if n0 != k { for j in range(0u, dim) { let off_n0_j = self.offset(n0, j); let off_k_j = self.offset(k, j); self.mij.as_mut_slice().swap(off_n0_j, off_k_j); res.mij.as_mut_slice().swap(off_n0_j, off_k_j); } } unsafe { let pivot = self.unsafe_at((k, k)); for j in range(k, dim) { let selfval = self.unsafe_at((k, j)) / pivot; self.unsafe_set((k, j), selfval); } for j in range(0u, dim) { let resval = res.unsafe_at((k, j)) / pivot; res.unsafe_set((k, j), resval); } for l in range(0u, dim) { if l != k { let normalizer = self.unsafe_at((l, k)); for j in range(k, dim) { let selfval = self.unsafe_at((l, j)) - self.unsafe_at((k, j)) * normalizer; self.unsafe_set((l, j), selfval); } for j in range(0u, dim) { let resval = res.unsafe_at((l, j)) - res.unsafe_at((k, j)) * normalizer; res.unsafe_set((l, j), resval); } } } } } *self = res; true } } impl Transpose for DMat { #[inline] fn transpose_cpy(m: &DMat) -> DMat { if m.nrows == m.ncols { let mut res = m.clone(); res.transpose(); res } else { let mut res = unsafe { DMat::new_uninitialized(m.ncols, m.nrows) }; for i in range(0u, m.nrows) { for j in range(0u, m.ncols) { unsafe { res.unsafe_set((j, i), m.unsafe_at((i, j))) } } } res } } #[inline] fn transpose(&mut self) { if self.nrows == self.ncols { for i in range(1u, self.nrows) { for j in range(0u, self.ncols - 1) { let off_i_j = self.offset(i, j); let off_j_i = self.offset(j, i); self.mij.as_mut_slice().swap(off_i_j, off_j_i); } } mem::swap(&mut self.nrows, &mut self.ncols); } else { // FIXME: implement a better algorithm which does that in-place. *self = Transpose::transpose_cpy(self); } } } impl + Clone> Mean> for DMat { fn mean(m: &DMat) -> DVec { let mut res: DVec = DVec::new_zeros(m.ncols); let normalizer: N = Cast::from(1.0f32 / Cast::from(m.nrows)); for i in range(0u, m.nrows) { for j in range(0u, m.ncols) { unsafe { let acc = res.unsafe_at(j) + m.unsafe_at((i, j)) * normalizer; res.unsafe_set(j, acc); } } } res } } impl + DMatDivRhs> + ToStr > Cov> for DMat { // FIXME: this could be heavily optimized, removing all temporaries by merging loops. fn cov(m: &DMat) -> DMat { assert!(m.nrows > 1); let mut centered = unsafe { DMat::new_uninitialized(m.nrows, m.ncols) }; let mean = Mean::mean(m); // FIXME: use the rows iterator when available for i in range(0u, m.nrows) { for j in range(0u, m.ncols) { unsafe { centered.unsafe_set((i, j), m.unsafe_at((i, j)) - mean.unsafe_at(j)); } } } // FIXME: return a triangular matrix? let fnormalizer: f32 = Cast::from(m.nrows() - 1); let normalizer: N = Cast::from(fnormalizer); // FIXME: this will do 2 allocations for temporaries! (Transpose::transpose_cpy(¢ered) * centered) / normalizer } } impl ColSlice> for DMat { fn col_slice(&self, col_id :uint, row_start: uint, row_end: uint) -> DVec { assert!(col_id < self.ncols); assert!(row_start < row_end); assert!(row_end <= self.nrows); // we can init from slice thanks to the matrix being column major let start= self.offset(row_start, col_id); let stop = self.offset(row_end, col_id); let slice = DVec::from_vec( row_end - row_start, self.mij.slice(start, stop)); slice } } impl RowSlice> for DMat { fn row_slice(&self, row_id :uint, col_start: uint, col_end: uint) -> DVec { assert!(row_id < self.nrows); assert!(col_start < col_end); assert!(col_end <= self.ncols); let mut slice : DVec = unsafe { DVec::new_uninitialized(self.nrows) }; let mut slice_idx = 0u; for col_id in range(col_start, col_end) { unsafe { slice.unsafe_set(slice_idx, self.unsafe_at((row_id, col_id))); } slice_idx += 1; } slice } } impl> ApproxEq for DMat { #[inline] fn approx_epsilon(_: Option>) -> N { ApproxEq::approx_epsilon(None::) } #[inline] fn approx_eq(a: &DMat, b: &DMat) -> bool { let mut zip = a.mij.iter().zip(b.mij.iter()); zip.all(|(a, b)| ApproxEq::approx_eq(a, b)) } #[inline] fn approx_eq_eps(a: &DMat, b: &DMat, epsilon: &N) -> bool { let mut zip = a.mij.iter().zip(b.mij.iter()); zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon)) } } impl Show for DMat { fn fmt(&self, form:&mut Formatter) -> Result { for i in range(0u, self.nrows()) { for j in range(0u, self.ncols()) { let _ = write!(form, "{} ", self.at((i, j))); } let _ = write!(form, "\n"); } write!(form, "\n") } } macro_rules! scalar_mul_impl ( ($n: ident) => ( impl DMatMulRhs<$n, DMat<$n>> for $n { #[inline] fn binop(left: &DMat<$n>, right: &$n) -> DMat<$n> { DMat { nrows: left.nrows, ncols: left.ncols, mij: left.mij.iter().map(|a| a * *right).collect() } } } ) ) macro_rules! scalar_div_impl ( ($n: ident) => ( impl DMatDivRhs<$n, DMat<$n>> for $n { #[inline] fn binop(left: &DMat<$n>, right: &$n) -> DMat<$n> { DMat { nrows: left.nrows, ncols: left.ncols, mij: left.mij.iter().map(|a| a / *right).collect() } } } ) ) macro_rules! scalar_add_impl ( ($n: ident) => ( impl DMatAddRhs<$n, DMat<$n>> for $n { #[inline] fn binop(left: &DMat<$n>, right: &$n) -> DMat<$n> { DMat { nrows: left.nrows, ncols: left.ncols, mij: left.mij.iter().map(|a| a + *right).collect() } } } ) ) macro_rules! scalar_sub_impl ( ($n: ident) => ( impl DMatSubRhs<$n, DMat<$n>> for $n { #[inline] fn binop(left: &DMat<$n>, right: &$n) -> DMat<$n> { DMat { nrows: left.nrows, ncols: left.ncols, mij: left.mij.iter().map(|a| a - *right).collect() } } } ) ) scalar_mul_impl!(f64) scalar_mul_impl!(f32) scalar_mul_impl!(u64) scalar_mul_impl!(u32) scalar_mul_impl!(u16) scalar_mul_impl!(u8) scalar_mul_impl!(i64) scalar_mul_impl!(i32) scalar_mul_impl!(i16) scalar_mul_impl!(i8) scalar_mul_impl!(uint) scalar_mul_impl!(int) scalar_div_impl!(f64) scalar_div_impl!(f32) scalar_div_impl!(u64) scalar_div_impl!(u32) scalar_div_impl!(u16) scalar_div_impl!(u8) scalar_div_impl!(i64) scalar_div_impl!(i32) scalar_div_impl!(i16) scalar_div_impl!(i8) scalar_div_impl!(uint) scalar_div_impl!(int) scalar_add_impl!(f64) scalar_add_impl!(f32) scalar_add_impl!(u64) scalar_add_impl!(u32) scalar_add_impl!(u16) scalar_add_impl!(u8) scalar_add_impl!(i64) scalar_add_impl!(i32) scalar_add_impl!(i16) scalar_add_impl!(i8) scalar_add_impl!(uint) scalar_add_impl!(int) scalar_sub_impl!(f64) scalar_sub_impl!(f32) scalar_sub_impl!(u64) scalar_sub_impl!(u32) scalar_sub_impl!(u16) scalar_sub_impl!(u8) scalar_sub_impl!(i64) scalar_sub_impl!(i32) scalar_sub_impl!(i16) scalar_sub_impl!(i8) scalar_sub_impl!(uint) scalar_sub_impl!(int)