#[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec; #[cfg(feature = "mint")] use mint; use simba::scalar::{SubsetOf, SupersetOf}; use std::convert::{AsMut, AsRef, From, Into}; use std::mem; use std::ptr; use generic_array::ArrayLength; use std::ops::Mul; use typenum::Prod; use simba::simd::{PrimitiveSimdValue, SimdValue}; use crate::base::allocator::{Allocator, SameShapeAllocator}; use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint}; #[cfg(any(feature = "std", feature = "alloc"))] use crate::base::dimension::Dynamic; use crate::base::dimension::{ Dim, DimName, U1, U10, U11, U12, U13, U14, U15, U16, U2, U3, U4, U5, U6, U7, U8, U9, }; use crate::base::iter::{MatrixIter, MatrixIterMut}; use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Storage, StorageMut}; use crate::base::{ ArrayStorage, DVectorSlice, DVectorSliceMut, DefaultAllocator, Matrix, MatrixMN, MatrixSlice, MatrixSliceMut, Scalar, }; #[cfg(any(feature = "std", feature = "alloc"))] use crate::base::{DVector, VecStorage}; use crate::base::{SliceStorage, SliceStorageMut}; use crate::constraint::DimEq; // TODO: too bad this won't work allo slice conversions. impl SubsetOf> for MatrixMN where R1: Dim, C1: Dim, R2: Dim, C2: Dim, N1: Scalar, N2: Scalar + SupersetOf, DefaultAllocator: Allocator + Allocator + SameShapeAllocator, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { #[inline] fn to_superset(&self) -> MatrixMN { let (nrows, ncols) = self.shape(); let nrows2 = R2::from_usize(nrows); let ncols2 = C2::from_usize(ncols); #[cfg(feature="no_unsound_assume_init")] let mut res: MatrixMN = unimplemented!(); #[cfg(not(feature="no_unsound_assume_init"))] let mut res = unsafe { MatrixMN::::new_uninitialized_generic(nrows2, ncols2).assume_init() }; for i in 0..nrows { for j in 0..ncols { unsafe { *res.get_unchecked_mut((i, j)) = N2::from_subset(self.get_unchecked((i, j))) } } } res } #[inline] fn is_in_subset(m: &MatrixMN) -> bool { m.iter().all(|e| e.is_in_subset()) } #[inline] fn from_superset_unchecked(m: &MatrixMN) -> Self { let (nrows2, ncols2) = m.shape(); let nrows = R1::from_usize(nrows2); let ncols = C1::from_usize(ncols2); #[cfg(feature="no_unsound_assume_init")] let mut res: Self = unimplemented!(); #[cfg(not(feature="no_unsound_assume_init"))] let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols).assume_init() }; for i in 0..nrows2 { for j in 0..ncols2 { unsafe { *res.get_unchecked_mut((i, j)) = m.get_unchecked((i, j)).to_subset_unchecked() } } } res } } impl<'a, N: Scalar, R: Dim, C: Dim, S: Storage> IntoIterator for &'a Matrix { type Item = &'a N; type IntoIter = MatrixIter<'a, N, R, C, S>; #[inline] fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut> IntoIterator for &'a mut Matrix { type Item = &'a mut N; type IntoIter = MatrixIterMut<'a, N, R, C, S>; #[inline] fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } macro_rules! impl_from_into_asref_1D( ($(($NRows: ident, $NCols: ident) => $SZ: expr);* $(;)*) => {$( impl From<[N; $SZ]> for MatrixMN where N: Scalar, DefaultAllocator: Allocator { #[inline] fn from(arr: [N; $SZ]) -> Self { unsafe { let mut res = Self::new_uninitialized(); ptr::copy_nonoverlapping(&arr[0], (*res.as_mut_ptr()).data.ptr_mut(), $SZ); res.assume_init() } } } impl Into<[N; $SZ]> for Matrix where N: Scalar, S: ContiguousStorage { #[inline] fn into(self) -> [N; $SZ] { let mut res = mem::MaybeUninit::<[N; $SZ]>::uninit(); unsafe { ptr::copy_nonoverlapping(self.data.ptr(), res.as_mut_ptr() as *mut N, $SZ) }; unsafe { res.assume_init() } } } impl AsRef<[N; $SZ]> for Matrix where N: Scalar, S: ContiguousStorage { #[inline] fn as_ref(&self) -> &[N; $SZ] { unsafe { mem::transmute(self.data.ptr()) } } } impl AsMut<[N; $SZ]> for Matrix where N: Scalar, S: ContiguousStorageMut { #[inline] fn as_mut(&mut self) -> &mut [N; $SZ] { unsafe { mem::transmute(self.data.ptr_mut()) } } } )*} ); // Implement for vectors of dimension 1 .. 16. impl_from_into_asref_1D!( // Row vectors. (U1, U1 ) => 1; (U1, U2 ) => 2; (U1, U3 ) => 3; (U1, U4 ) => 4; (U1, U5 ) => 5; (U1, U6 ) => 6; (U1, U7 ) => 7; (U1, U8 ) => 8; (U1, U9 ) => 9; (U1, U10) => 10; (U1, U11) => 11; (U1, U12) => 12; (U1, U13) => 13; (U1, U14) => 14; (U1, U15) => 15; (U1, U16) => 16; // Column vectors. (U2 , U1) => 2; (U3 , U1) => 3; (U4 , U1) => 4; (U5 , U1) => 5; (U6 , U1) => 6; (U7 , U1) => 7; (U8 , U1) => 8; (U9 , U1) => 9; (U10, U1) => 10; (U11, U1) => 11; (U12, U1) => 12; (U13, U1) => 13; (U14, U1) => 14; (U15, U1) => 15; (U16, U1) => 16; ); macro_rules! impl_from_into_asref_2D( ($(($NRows: ty, $NCols: ty) => ($SZRows: expr, $SZCols: expr));* $(;)*) => {$( impl From<[[N; $SZRows]; $SZCols]> for MatrixMN where DefaultAllocator: Allocator { #[inline] fn from(arr: [[N; $SZRows]; $SZCols]) -> Self { unsafe { let mut res = Self::new_uninitialized(); ptr::copy_nonoverlapping(&arr[0][0], (*res.as_mut_ptr()).data.ptr_mut(), $SZRows * $SZCols); res.assume_init() } } } impl Into<[[N; $SZRows]; $SZCols]> for Matrix where S: ContiguousStorage { #[inline] fn into(self) -> [[N; $SZRows]; $SZCols] { let mut res = mem::MaybeUninit::<[[N; $SZRows]; $SZCols]>::uninit(); unsafe { ptr::copy_nonoverlapping(self.data.ptr(), res.as_mut_ptr() as *mut N, $SZRows * $SZCols) }; unsafe { res.assume_init() } } } impl AsRef<[[N; $SZRows]; $SZCols]> for Matrix where S: ContiguousStorage { #[inline] fn as_ref(&self) -> &[[N; $SZRows]; $SZCols] { unsafe { mem::transmute(self.data.ptr()) } } } impl AsMut<[[N; $SZRows]; $SZCols]> for Matrix where S: ContiguousStorageMut { #[inline] fn as_mut(&mut self) -> &mut [[N; $SZRows]; $SZCols] { unsafe { mem::transmute(self.data.ptr_mut()) } } } )*} ); // Implement for matrices with shape 2x2 .. 6x6. impl_from_into_asref_2D!( (U2, U2) => (2, 2); (U2, U3) => (2, 3); (U2, U4) => (2, 4); (U2, U5) => (2, 5); (U2, U6) => (2, 6); (U3, U2) => (3, 2); (U3, U3) => (3, 3); (U3, U4) => (3, 4); (U3, U5) => (3, 5); (U3, U6) => (3, 6); (U4, U2) => (4, 2); (U4, U3) => (4, 3); (U4, U4) => (4, 4); (U4, U5) => (4, 5); (U4, U6) => (4, 6); (U5, U2) => (5, 2); (U5, U3) => (5, 3); (U5, U4) => (5, 4); (U5, U5) => (5, 5); (U5, U6) => (5, 6); (U6, U2) => (6, 2); (U6, U3) => (6, 3); (U6, U4) => (6, 4); (U6, U5) => (6, 5); (U6, U6) => (6, 6); ); #[cfg(feature = "mint")] macro_rules! impl_from_into_mint_1D( ($($NRows: ident => $VT:ident [$SZ: expr]);* $(;)*) => {$( impl From> for MatrixMN where N: Scalar, DefaultAllocator: Allocator { #[inline] fn from(v: mint::$VT) -> Self { unsafe { let mut res = Self::new_uninitialized(); ptr::copy_nonoverlapping(&v.x, res.data.ptr_mut(), $SZ); res } } } impl Into> for Matrix where N: Scalar, S: ContiguousStorage { #[inline] fn into(self) -> mint::$VT { unsafe { let mut res: mint::$VT = mem::MaybeUninit::uninit().assume_init(); ptr::copy_nonoverlapping(self.data.ptr(), &mut res.x, $SZ); res } } } impl AsRef> for Matrix where N: Scalar, S: ContiguousStorage { #[inline] fn as_ref(&self) -> &mint::$VT { unsafe { mem::transmute(self.data.ptr()) } } } impl AsMut> for Matrix where N: Scalar, S: ContiguousStorageMut { #[inline] fn as_mut(&mut self) -> &mut mint::$VT { unsafe { mem::transmute(self.data.ptr_mut()) } } } )*} ); // Implement for vectors of dimension 2 .. 4. #[cfg(feature = "mint")] impl_from_into_mint_1D!( U2 => Vector2[2]; U3 => Vector3[3]; U4 => Vector4[4]; ); #[cfg(feature = "mint")] macro_rules! impl_from_into_mint_2D( ($(($NRows: ty, $NCols: ty) => $MV:ident{ $($component:ident),* }[$SZRows: expr]);* $(;)*) => {$( impl From> for MatrixMN where N: Scalar, DefaultAllocator: Allocator { #[inline] fn from(m: mint::$MV) -> Self { unsafe { let mut res = Self::new_uninitialized(); let mut ptr = (*res).data.ptr_mut(); $( ptr::copy_nonoverlapping(&m.$component.x, ptr, $SZRows); ptr = ptr.offset($SZRows); )* let _ = ptr; res.assume_init() } } } impl Into> for MatrixMN where N: Scalar, DefaultAllocator: Allocator { #[inline] fn into(self) -> mint::$MV { unsafe { let mut res: mint::$MV = mem::MaybeUninit::uninit().assume_init(); let mut ptr = self.data.ptr(); $( ptr::copy_nonoverlapping(ptr, &mut res.$component.x, $SZRows); ptr = ptr.offset($SZRows); )* let _ = ptr; res } } } )*} ); // Implement for matrices with shape 2x2 .. 4x4. #[cfg(feature = "mint")] impl_from_into_mint_2D!( (U2, U2) => ColumnMatrix2{x, y}[2]; (U2, U3) => ColumnMatrix2x3{x, y, z}[2]; (U3, U3) => ColumnMatrix3{x, y, z}[3]; (U3, U4) => ColumnMatrix3x4{x, y, z, w}[3]; (U4, U4) => ColumnMatrix4{x, y, z, w}[4]; ); impl<'a, N, R, C, RStride, CStride> From> for Matrix> where N: Scalar, R: DimName, C: DimName, RStride: Dim, CStride: Dim, R::Value: Mul, Prod: ArrayLength, { fn from(matrix_slice: MatrixSlice<'a, N, R, C, RStride, CStride>) -> Self { matrix_slice.into_owned() } } #[cfg(any(feature = "std", feature = "alloc"))] impl<'a, N, C, RStride, CStride> From> for Matrix> where N: Scalar, C: Dim, RStride: Dim, CStride: Dim, { fn from(matrix_slice: MatrixSlice<'a, N, Dynamic, C, RStride, CStride>) -> Self { matrix_slice.into_owned() } } #[cfg(any(feature = "std", feature = "alloc"))] impl<'a, N, R, RStride, CStride> From> for Matrix> where N: Scalar, R: DimName, RStride: Dim, CStride: Dim, { fn from(matrix_slice: MatrixSlice<'a, N, R, Dynamic, RStride, CStride>) -> Self { matrix_slice.into_owned() } } impl<'a, N, R, C, RStride, CStride> From> for Matrix> where N: Scalar, R: DimName, C: DimName, RStride: Dim, CStride: Dim, R::Value: Mul, Prod: ArrayLength, { fn from(matrix_slice: MatrixSliceMut<'a, N, R, C, RStride, CStride>) -> Self { matrix_slice.into_owned() } } #[cfg(any(feature = "std", feature = "alloc"))] impl<'a, N, C, RStride, CStride> From> for Matrix> where N: Scalar, C: Dim, RStride: Dim, CStride: Dim, { fn from(matrix_slice: MatrixSliceMut<'a, N, Dynamic, C, RStride, CStride>) -> Self { matrix_slice.into_owned() } } #[cfg(any(feature = "std", feature = "alloc"))] impl<'a, N, R, RStride, CStride> From> for Matrix> where N: Scalar, R: DimName, RStride: Dim, CStride: Dim, { fn from(matrix_slice: MatrixSliceMut<'a, N, R, Dynamic, RStride, CStride>) -> Self { matrix_slice.into_owned() } } impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a Matrix> for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride> where N: Scalar, R: Dim, C: Dim, RSlice: Dim, CSlice: Dim, RStride: Dim, CStride: Dim, S: Storage, ShapeConstraint: DimEq + DimEq + DimEq + DimEq, { fn from(m: &'a Matrix) -> Self { let (row, col) = m.data.shape(); let row_slice = RSlice::from_usize(row.value()); let col_slice = CSlice::from_usize(col.value()); let (rstride, cstride) = m.strides(); let rstride_slice = RStride::from_usize(rstride); let cstride_slice = CStride::from_usize(cstride); unsafe { let data = SliceStorage::from_raw_parts( m.data.ptr(), (row_slice, col_slice), (rstride_slice, cstride_slice), ); Matrix::from_data_statically_unchecked(data) } } } impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix> for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride> where N: Scalar, R: Dim, C: Dim, RSlice: Dim, CSlice: Dim, RStride: Dim, CStride: Dim, S: Storage, ShapeConstraint: DimEq + DimEq + DimEq + DimEq, { fn from(m: &'a mut Matrix) -> Self { let (row, col) = m.data.shape(); let row_slice = RSlice::from_usize(row.value()); let col_slice = CSlice::from_usize(col.value()); let (rstride, cstride) = m.strides(); let rstride_slice = RStride::from_usize(rstride); let cstride_slice = CStride::from_usize(cstride); unsafe { let data = SliceStorage::from_raw_parts( m.data.ptr(), (row_slice, col_slice), (rstride_slice, cstride_slice), ); Matrix::from_data_statically_unchecked(data) } } } impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix> for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride> where N: Scalar, R: Dim, C: Dim, RSlice: Dim, CSlice: Dim, RStride: Dim, CStride: Dim, S: StorageMut, ShapeConstraint: DimEq + DimEq + DimEq + DimEq, { fn from(m: &'a mut Matrix) -> Self { let (row, col) = m.data.shape(); let row_slice = RSlice::from_usize(row.value()); let col_slice = CSlice::from_usize(col.value()); let (rstride, cstride) = m.strides(); let rstride_slice = RStride::from_usize(rstride); let cstride_slice = CStride::from_usize(cstride); unsafe { let data = SliceStorageMut::from_raw_parts( m.data.ptr_mut(), (row_slice, col_slice), (rstride_slice, cstride_slice), ); Matrix::from_data_statically_unchecked(data) } } } #[cfg(any(feature = "std", feature = "alloc"))] impl<'a, N: Scalar> From> for DVector { #[inline] fn from(vec: Vec) -> Self { Self::from_vec(vec) } } impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage> Into<&'a [N]> for &'a Matrix { #[inline] fn into(self) -> &'a [N] { self.as_slice() } } impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut> Into<&'a mut [N]> for &'a mut Matrix { #[inline] fn into(self) -> &'a mut [N] { self.as_mut_slice() } } impl<'a, N: Scalar + Copy> From<&'a [N]> for DVectorSlice<'a, N> { #[inline] fn from(slice: &'a [N]) -> Self { Self::from_slice(slice, slice.len()) } } impl<'a, N: Scalar + Copy> From<&'a mut [N]> for DVectorSliceMut<'a, N> { #[inline] fn from(slice: &'a mut [N]) -> Self { Self::from_slice(slice, slice.len()) } } impl From<[MatrixMN; 2]> for MatrixMN where N: From<[::Element; 2]>, N::Element: Scalar + SimdValue, DefaultAllocator: Allocator + Allocator, { #[inline] fn from(arr: [MatrixMN; 2]) -> Self { let (nrows, ncols) = arr[0].data.shape(); Self::from_fn_generic(nrows, ncols, |i, j| { [ arr[0][(i, j)].inlined_clone(), arr[1][(i, j)].inlined_clone(), ] .into() }) } } impl From<[MatrixMN; 4]> for MatrixMN where N: From<[::Element; 4]>, N::Element: Scalar + SimdValue, DefaultAllocator: Allocator + Allocator, { #[inline] fn from(arr: [MatrixMN; 4]) -> Self { let (nrows, ncols) = arr[0].data.shape(); Self::from_fn_generic(nrows, ncols, |i, j| { [ arr[0][(i, j)].inlined_clone(), arr[1][(i, j)].inlined_clone(), arr[2][(i, j)].inlined_clone(), arr[3][(i, j)].inlined_clone(), ] .into() }) } } impl From<[MatrixMN; 8]> for MatrixMN where N: From<[::Element; 8]>, N::Element: Scalar + SimdValue, DefaultAllocator: Allocator + Allocator, { #[inline] fn from(arr: [MatrixMN; 8]) -> Self { let (nrows, ncols) = arr[0].data.shape(); Self::from_fn_generic(nrows, ncols, |i, j| { [ arr[0][(i, j)].inlined_clone(), arr[1][(i, j)].inlined_clone(), arr[2][(i, j)].inlined_clone(), arr[3][(i, j)].inlined_clone(), arr[4][(i, j)].inlined_clone(), arr[5][(i, j)].inlined_clone(), arr[6][(i, j)].inlined_clone(), arr[7][(i, j)].inlined_clone(), ] .into() }) } } impl From<[MatrixMN; 16]> for MatrixMN where N: From<[::Element; 16]>, N::Element: Scalar + SimdValue, DefaultAllocator: Allocator + Allocator, { fn from(arr: [MatrixMN; 16]) -> Self { let (nrows, ncols) = arr[0].data.shape(); Self::from_fn_generic(nrows, ncols, |i, j| { [ arr[0][(i, j)].inlined_clone(), arr[1][(i, j)].inlined_clone(), arr[2][(i, j)].inlined_clone(), arr[3][(i, j)].inlined_clone(), arr[4][(i, j)].inlined_clone(), arr[5][(i, j)].inlined_clone(), arr[6][(i, j)].inlined_clone(), arr[7][(i, j)].inlined_clone(), arr[8][(i, j)].inlined_clone(), arr[9][(i, j)].inlined_clone(), arr[10][(i, j)].inlined_clone(), arr[11][(i, j)].inlined_clone(), arr[12][(i, j)].inlined_clone(), arr[13][(i, j)].inlined_clone(), arr[14][(i, j)].inlined_clone(), arr[15][(i, j)].inlined_clone(), ] .into() }) } }