#[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use rand::distributions::{Distribution, Standard}; use rand::Rng; #[cfg(feature = "serde-serialize")] use serde::{Serialize, Deserialize, Serializer, Deserializer}; use std::fmt; use alga::general::Real; use base::dimension::U3; use base::helper; use base::storage::Storage; use base::{Matrix4, Vector, Vector3}; use geometry::Point3; /// A 3D orthographic projection stored as an homogeneous 4x4 matrix. pub struct Orthographic3 { matrix: Matrix4, } impl Copy for Orthographic3 {} impl Clone for Orthographic3 { #[inline] fn clone(&self) -> Self { Orthographic3::from_matrix_unchecked(self.matrix.clone()) } } impl fmt::Debug for Orthographic3 { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { self.matrix.fmt(f) } } impl PartialEq for Orthographic3 { #[inline] fn eq(&self, right: &Self) -> bool { self.matrix == right.matrix } } #[cfg(feature = "serde-serialize")] impl Serialize for Orthographic3 { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.matrix.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'a, N: Real + Deserialize<'a>> Deserialize<'a> for Orthographic3 { fn deserialize(deserializer: Des) -> Result where Des: Deserializer<'a>, { let matrix = Matrix4::::deserialize(deserializer)?; Ok(Orthographic3::from_matrix_unchecked(matrix)) } } impl Orthographic3 { /// Creates a new orthographic projection matrix. #[inline] pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self { assert!( left < right, "The left corner must be farther than the right corner." ); assert!( bottom < top, "The top corner must be higher than the bottom corner." ); assert!( znear < zfar, "The far plane must be farther than the near plane." ); let matrix = Matrix4::::identity(); let mut res = Self::from_matrix_unchecked(matrix); res.set_left_and_right(left, right); res.set_bottom_and_top(bottom, top); res.set_znear_and_zfar(znear, zfar); res } /// Wraps the given matrix to interpret it as a 3D orthographic matrix. /// /// It is not checked whether or not the given matrix actually represents an orthographic /// projection. #[inline] pub fn from_matrix_unchecked(matrix: Matrix4) -> Self { Orthographic3 { matrix: matrix } } /// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view. #[inline] pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self { assert!( znear < zfar, "The far plane must be farther than the near plane." ); assert!( !relative_eq!(aspect, N::zero()), "The apsect ratio must not be zero." ); let half: N = ::convert(0.5); let width = zfar * (vfov * half).tan(); let height = width / aspect; Self::new( -width * half, width * half, -height * half, height * half, znear, zfar, ) } /// Retrieves the inverse of the underlying homogeneous matrix. #[inline] pub fn inverse(&self) -> Matrix4 { let mut res = self.to_homogeneous(); let inv_m11 = N::one() / self.matrix[(0, 0)]; let inv_m22 = N::one() / self.matrix[(1, 1)]; let inv_m33 = N::one() / self.matrix[(2, 2)]; res[(0, 0)] = inv_m11; res[(1, 1)] = inv_m22; res[(2, 2)] = inv_m33; res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11; res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22; res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33; res } /// Computes the corresponding homogeneous matrix. #[inline] pub fn to_homogeneous(&self) -> Matrix4 { self.matrix.clone_owned() } /// A reference to the underlying homogeneous transformation matrix. #[inline] pub fn as_matrix(&self) -> &Matrix4 { &self.matrix } /// Retrieves the underlying homogeneous matrix. #[inline] pub fn unwrap(self) -> Matrix4 { self.matrix } /// The smallest x-coordinate of the view cuboid. #[inline] pub fn left(&self) -> N { (-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The largest x-coordinate of the view cuboid. #[inline] pub fn right(&self) -> N { (N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The smallest y-coordinate of the view cuboid. #[inline] pub fn bottom(&self) -> N { (-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The largest y-coordinate of the view cuboid. #[inline] pub fn top(&self) -> N { (N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The near plane offset of the view cuboid. #[inline] pub fn znear(&self) -> N { (N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } /// The far plane offset of the view cuboid. #[inline] pub fn zfar(&self) -> N { (-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a point. Faster than matrix multiplication. #[inline] pub fn project_point(&self, p: &Point3) -> Point3 { Point3::new( self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)], self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)], self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)], ) } /// Un-projects a point. Faster than multiplication by the underlying matrix inverse. #[inline] pub fn unproject_point(&self, p: &Point3) -> Point3 { Point3::new( (p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)], (p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)], (p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)], ) } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a vector. Faster than matrix multiplication. #[inline] pub fn project_vector(&self, p: &Vector) -> Vector3 where SB: Storage, { Vector3::new( self.matrix[(0, 0)] * p[0], self.matrix[(1, 1)] * p[1], self.matrix[(2, 2)] * p[2], ) } /// Sets the smallest x-coordinate of the view cuboid. #[inline] pub fn set_left(&mut self, left: N) { let right = self.right(); self.set_left_and_right(left, right); } /// Sets the largest x-coordinate of the view cuboid. #[inline] pub fn set_right(&mut self, right: N) { let left = self.left(); self.set_left_and_right(left, right); } /// Sets the smallest y-coordinate of the view cuboid. #[inline] pub fn set_bottom(&mut self, bottom: N) { let top = self.top(); self.set_bottom_and_top(bottom, top); } /// Sets the largest y-coordinate of the view cuboid. #[inline] pub fn set_top(&mut self, top: N) { let bottom = self.bottom(); self.set_bottom_and_top(bottom, top); } /// Sets the near plane offset of the view cuboid. #[inline] pub fn set_znear(&mut self, znear: N) { let zfar = self.zfar(); self.set_znear_and_zfar(znear, zfar); } /// Sets the far plane offset of the view cuboid. #[inline] pub fn set_zfar(&mut self, zfar: N) { let znear = self.znear(); self.set_znear_and_zfar(znear, zfar); } /// Sets the view cuboid coordinates along the `x` axis. #[inline] pub fn set_left_and_right(&mut self, left: N, right: N) { assert!( left < right, "The left corner must be farther than the right corner." ); self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left); self.matrix[(0, 3)] = -(right + left) / (right - left); } /// Sets the view cuboid coordinates along the `y` axis. #[inline] pub fn set_bottom_and_top(&mut self, bottom: N, top: N) { assert!( bottom < top, "The top corner must be higher than the bottom corner." ); self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom); self.matrix[(1, 3)] = -(top + bottom) / (top - bottom); } /// Sets the near and far plane offsets of the view cuboid. #[inline] pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) { assert!( !relative_eq!(zfar - znear, N::zero()), "The near-plane and far-plane must not be superimposed." ); self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear); self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear); } } impl Distribution> for Standard where Standard: Distribution, { fn sample(&self, r: &mut R) -> Orthographic3 { let left = r.gen(); let right = helper::reject_rand(r, |x: &N| *x > left); let bottom = r.gen(); let top = helper::reject_rand(r, |x: &N| *x > bottom); let znear = r.gen(); let zfar = helper::reject_rand(r, |x: &N| *x > znear); Orthographic3::new(left, right, bottom, top, znear, zfar) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Orthographic3 where Matrix4: Send, { fn arbitrary(g: &mut G) -> Self { let left = Arbitrary::arbitrary(g); let right = helper::reject(g, |x: &N| *x > left); let bottom = Arbitrary::arbitrary(g); let top = helper::reject(g, |x: &N| *x > bottom); let znear = Arbitrary::arbitrary(g); let zfar = helper::reject(g, |x: &N| *x > znear); Self::new(left, right, bottom, top, znear, zfar) } }