use num::{Zero, One}; use std::fmt; use approx::ApproxEq; use alga::general::Real; use core::{SquareMatrix, Scalar, OwnedSquareMatrix}; use core::dimension::{DimName, DimNameSum, DimNameAdd, U1}; use core::storage::{Storage, StorageMut}; use core::allocator::Allocator; /// A rotation matrix with an owned storage. pub type OwnedRotation = RotationBase>::Buffer>; /// A rotation matrix. #[repr(C)] #[derive(Hash, Debug, Clone, Copy)] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] pub struct RotationBase { matrix: SquareMatrix } impl> RotationBase where N: Scalar, S: Storage { /// A reference to the underlying matrix representation of this rotation. #[inline] pub fn matrix(&self) -> &SquareMatrix { &self.matrix } /// A mutable reference to the underlying matrix representation of this rotation. /// /// This is unsafe because this allows the user to replace the matrix by another one that is /// non-square, non-inversible, or non-orthonormal. If one of those properties is broken, /// subsequent method calls may be UB. #[inline] pub unsafe fn matrix_mut(&mut self) -> &mut SquareMatrix { &mut self.matrix } /// Unwraps the underlying matrix. #[inline] pub fn unwrap(self) -> SquareMatrix { self.matrix } /// Converts this rotation into its equivalent homogeneous transformation matrix. #[inline] pub fn to_homogeneous(&self) -> OwnedSquareMatrix, S::Alloc> where N: Zero + One, D: DimNameAdd, S::Alloc: Allocator, DimNameSum> { let mut res = OwnedSquareMatrix::::identity(); res.fixed_slice_mut::(0, 0).copy_from(&self.matrix); res } } impl> RotationBase { /// Creates a new rotation from the given square matrix. /// /// The matrix squareness is checked but not its orthonormality. #[inline] pub fn from_matrix_unchecked(matrix: SquareMatrix) -> RotationBase { assert!(matrix.is_square(), "Unable to create a rotation from a non-square matrix."); RotationBase { matrix: matrix } } /// Transposes `self`. #[inline] pub fn transpose(&self) -> OwnedRotation { RotationBase::from_matrix_unchecked(self.matrix.transpose()) } /// Inverts `self`. #[inline] pub fn inverse(&self) -> OwnedRotation { self.transpose() } } impl> RotationBase { /// Transposes `self` in-place. #[inline] pub fn transpose_mut(&mut self) { self.matrix.transpose_mut() } /// Inverts `self` in-place. #[inline] pub fn inverse_mut(&mut self) { self.transpose_mut() } } impl> Eq for RotationBase { } impl> PartialEq for RotationBase { #[inline] fn eq(&self, right: &RotationBase) -> bool { self.matrix == right.matrix } } impl ApproxEq for RotationBase where N: Scalar + ApproxEq, S: Storage, N::Epsilon: Copy { type Epsilon = N::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { N::default_epsilon() } #[inline] fn default_max_relative() -> Self::Epsilon { N::default_max_relative() } #[inline] fn default_max_ulps() -> u32 { N::default_max_ulps() } #[inline] fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool { self.matrix.relative_eq(&other.matrix, epsilon, max_relative) } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps) } } /* * * Display * */ impl fmt::Display for RotationBase where N: Real + fmt::Display, S: Storage, S::Alloc: Allocator { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let precision = f.precision().unwrap_or(3); try!(writeln!(f, "RotationBase matrix {{")); try!(write!(f, "{:.*}", precision, self.matrix)); writeln!(f, "}}") } } // // /* // // * // // * Absolute // // * // // */ // // impl Absolute for $t { // // type AbsoluteValue = $submatrix; // // // // #[inline] // // fn abs(m: &$t) -> $submatrix { // // Absolute::abs(&m.submatrix) // // } // // }