use nalgebra_sparse::coo::CooMatrix; use nalgebra_sparse::ops::serial::{spmv_coo, spmm_csr_dense}; use nalgebra_sparse::ops::{no_transpose, Transposition}; use nalgebra_sparse::csr::CsrMatrix; use nalgebra_sparse::proptest::csr; use nalgebra::{DVector, DMatrix, Scalar, DMatrixSliceMut, DMatrixSlice}; use nalgebra::proptest::matrix; use proptest::prelude::*; use std::panic::catch_unwind; #[test] fn spmv_coo_agrees_with_dense_gemv() { let x = DVector::from_column_slice(&[2, 3, 4, 5]); let i = vec![0, 0, 1, 1, 2, 2]; let j = vec![0, 3, 0, 1, 1, 3]; let v = vec![3, 2, 1, 2, 3, 1]; let a = CooMatrix::try_from_triplets(3, 4, i, j, v).unwrap(); let betas = [0, 1, 2]; let alphas = [0, 1, 2]; for &beta in &betas { for &alpha in &alphas { let mut y = DVector::from_column_slice(&[2, 5, 3]); let mut y_dense = y.clone(); spmv_coo(beta, &mut y, alpha, &a, &x); y_dense.gemv(alpha, &DMatrix::from(&a), &x, beta); assert_eq!(y, y_dense); } } } #[derive(Debug)] struct SpmmCsrDenseArgs { c: DMatrix, beta: T, alpha: T, trans_a: Transposition, a: CsrMatrix, trans_b: Transposition, b: DMatrix, } /// Returns matrices C, A and B with compatible dimensions such that it can be used /// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`. fn spmm_csr_dense_args_strategy() -> impl Strategy> { let max_nnz = 40; let value_strategy = -5 ..= 5; let c_rows = 0 ..= 6usize; let c_cols = 0 ..= 6usize; let common_dim = 0 ..= 6usize; let trans_strategy = trans_strategy(); let c_matrix_strategy = matrix(value_strategy.clone(), c_rows, c_cols); (c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone()) .prop_flat_map(move |(c, common_dim, trans_a, trans_b)| { let a_shape = if trans_a.is_transpose() { (common_dim, c.nrows()) } else { (c.nrows(), common_dim) }; let b_shape = if trans_b.is_transpose() { (c.ncols(), common_dim) } else { (common_dim, c.ncols()) }; let a = csr(value_strategy.clone(), Just(a_shape.0), Just(a_shape.1), max_nnz); let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1); // We use the same values for alpha, beta parameters as for matrix elements let alpha = value_strategy.clone(); let beta = value_strategy.clone(); (Just(c), beta, alpha, Just(trans_a), a, Just(trans_b), b) }).prop_map(|(c, beta, alpha, trans_a, a, trans_b, b)| { SpmmCsrDenseArgs { c, beta, alpha, trans_a, a, trans_b, b, } }) } fn csr_strategy() -> impl Strategy> { csr(-5 ..= 5, 0 ..= 6usize, 0 ..= 6usize, 40) } fn dense_strategy() -> impl Strategy> { matrix(-5 ..= 5, 0 ..= 6, 0 ..= 6) } fn trans_strategy() -> impl Strategy + Clone { proptest::bool::ANY.prop_map(Transposition::from_bool) } /// Helper function to help us call dense GEMM with our transposition parameters fn dense_gemm<'a>(c: impl Into>, beta: i32, alpha: i32, trans_a: Transposition, a: impl Into>, trans_b: Transposition, b: impl Into>) { let mut c = c.into(); let a = a.into(); let b = b.into(); use Transposition::{Transpose, NoTranspose}; match (trans_a, trans_b) { (NoTranspose, NoTranspose) => c.gemm(alpha, &a, &b, beta), (Transpose, NoTranspose) => c.gemm(alpha, &a.transpose(), &b, beta), (NoTranspose, Transpose) => c.gemm(alpha, &a, &b.transpose(), beta), (Transpose, Transpose) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta) }; } proptest! { #[test] fn spmm_csr_dense_agrees_with_dense_result( SpmmCsrDenseArgs { c, beta, alpha, trans_a, a, trans_b, b } in spmm_csr_dense_args_strategy() ) { let mut spmm_result = c.clone(); spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); let mut gemm_result = c.clone(); dense_gemm(&mut gemm_result, beta, alpha, trans_a, &DMatrix::from(&a), trans_b, &b); prop_assert_eq!(spmm_result, gemm_result); } #[test] fn spmm_csr_dense_panics_on_dim_mismatch( (alpha, beta, c, a, b, trans_a, trans_b) in (-5 ..= 5, -5 ..= 5, dense_strategy(), csr_strategy(), dense_strategy(), trans_strategy(), trans_strategy()) ) { // We refer to `A * B` as the "product" let product_rows = if trans_a.is_transpose() { a.ncols() } else { a.nrows() }; let product_cols = if trans_b.is_transpose() { b.nrows() } else { b.ncols() }; // Determine the common dimension in the product // from the perspective of a and b, respectively let product_a_common = if trans_a.is_transpose() { a.nrows() } else { a.ncols() }; let product_b_common = if trans_b.is_transpose() { b.ncols() } else { b.nrows() }; let dims_are_compatible = product_rows == c.nrows() && product_cols == c.ncols() && product_a_common == product_b_common; // If the dimensions randomly happen to be compatible, then of course we need to // skip the test, so we assume that they are not. prop_assume!(!dims_are_compatible); let result = catch_unwind(|| { let mut spmm_result = c.clone(); spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); }); prop_assert!(result.is_err(), "The SPMM kernel executed successfully despite mismatch dimensions"); } }