extern crate nalgebra as na; extern crate rand; use rand::random; use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3, OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag, Transpose, RowSlice, ColSlice, Shape}; macro_rules! test_inv_mat_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmat : $t = random(); match na::inv(&randmat) { None => { }, Some(i) => assert!(na::approx_eq(&(i * randmat), &na::one())) } } ); ); macro_rules! test_transpose_mat_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmat : $t = random(); assert!(na::transpose(&na::transpose(&randmat)) == randmat); } ); ); macro_rules! test_qr_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmat : $t = random(); let (q, r) = na::qr(&randmat); let recomp = q * r; assert!(na::approx_eq(&randmat, &recomp)); } ); ); macro_rules! test_cholesky_impl( ($t: ty) => ( for _ in 0usize .. 10000 { // construct symmetric positive definite matrix let mut randmat : $t = random(); let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat)); diagmat = na::abs(&diagmat) + 1.0; randmat = randmat * diagmat * na::transpose(&randmat); let result = na::cholesky(&randmat); assert!(result.is_ok()); let v = result.unwrap(); let recomp = v * na::transpose(&v); assert!(na::approx_eq(&randmat, &recomp)); } ); ); macro_rules! test_hessenberg_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmat : $t = random(); let (q, h) = na::hessenberg(&randmat); let recomp = q * h * na::transpose(&q); let (rows, cols) = h.shape(); // Check if `h` has zero entries below the first subdiagonal if cols > 2 { for j in 0..(cols-2) { for i in (j+2)..rows { assert!(na::approx_eq(&h[(i,j)], &0.0f64)); } } } assert!(na::approx_eq(&randmat, &recomp)); } ); ); macro_rules! test_eigen_qr_impl( ($t: ty) => { for _ in 0usize .. 10000 { let randmat : $t = random(); // Make it symetric so that we can recompose the matrix to test at the end. let randmat = na::transpose(&randmat) * randmat; let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100); let diag: $t = Diag::from_diag(&eigenvalues); let recomp = eigenvectors * diag * na::transpose(&eigenvectors); println!("eigenvalues: {:?}", eigenvalues); println!(" mat: {:?}", randmat); println!("recomp: {:?}", recomp); assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2)); } for _ in 0usize .. 10000 { let randmat : $t = random(); // Take only diagonal part let randmat: $t = Diag::from_diag(&randmat.diag()); let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100); let diag: $t = Diag::from_diag(&eigenvalues); let recomp = eigenvectors * diag * na::transpose(&eigenvectors); println!("eigenvalues: {:?}", eigenvalues); println!(" mat: {:?}", randmat); println!("recomp: {:?}", recomp); assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2)); } } ); #[test] fn test_transpose_mat1() { test_transpose_mat_impl!(Mat1); } #[test] fn test_transpose_mat2() { test_transpose_mat_impl!(Mat2); } #[test] fn test_transpose_mat3() { test_transpose_mat_impl!(Mat3); } #[test] fn test_transpose_mat4() { test_transpose_mat_impl!(Mat4); } #[test] fn test_transpose_mat5() { test_transpose_mat_impl!(Mat5); } #[test] fn test_transpose_mat6() { test_transpose_mat_impl!(Mat6); } #[test] fn test_inv_mat1() { test_inv_mat_impl!(Mat1); } #[test] fn test_inv_mat2() { test_inv_mat_impl!(Mat2); } #[test] fn test_inv_mat3() { test_inv_mat_impl!(Mat3); } #[test] fn test_inv_mat4() { test_inv_mat_impl!(Mat4); } #[test] fn test_inv_mat5() { test_inv_mat_impl!(Mat5); } #[test] fn test_inv_mat6() { test_inv_mat_impl!(Mat6); } #[test] fn test_rotation2() { for _ in 0usize .. 10000 { let randmat: na::Rot2 = na::one(); let ang = Vec1::new(na::abs(&random::()) % ::pi()); assert!(na::approx_eq(&na::rotation(&na::append_rotation(&randmat, &ang)), &ang)); } } #[test] fn test_index_mat2() { let mat: Mat2 = random(); assert!(mat[(0, 1)] == na::transpose(&mat)[(1, 0)]); } #[test] fn test_inv_rotation3() { for _ in 0usize .. 10000 { let randmat: Rot3 = na::one(); let dir: Vec3 = random(); let ang = na::normalize(&dir) * (na::abs(&random::()) % ::pi()); let rot = na::append_rotation(&randmat, &ang); assert!(na::approx_eq(&(na::transpose(&rot) * rot), &na::one())); } } #[test] fn test_rot3_rotation_between() { let r1: Rot3 = random(); let r2: Rot3 = random(); let delta = na::rotation_between(&r1, &r2); assert!(na::approx_eq(&(delta * r1), &r2)) } #[test] fn test_rot3_angle_between() { let r1: Rot3 = random(); let r2: Rot3 = random(); let delta = na::rotation_between(&r1, &r2); let delta_angle = na::angle_between(&r1, &r2); assert!(na::approx_eq(&na::norm(&na::rotation(&delta)), &delta_angle)) } #[test] fn test_rot2_rotation_between() { let r1: Rot2 = random(); let r2: Rot2 = random(); let delta = na::rotation_between(&r1, &r2); assert!(na::approx_eq(&(delta * r1), &r2)) } #[test] fn test_rot2_angle_between() { let r1: Rot2 = random(); let r2: Rot2 = random(); let delta = na::rotation_between(&r1, &r2); let delta_angle = na::angle_between(&r1, &r2); assert!(na::approx_eq(&na::norm(&na::rotation(&delta)), &delta_angle)) } #[test] fn test_mean_dmat() { let mat = DMat::from_row_vec( 3, 3, &[ 1.0f64, 2.0, 3.0, 4.0f64, 5.0, 6.0, 7.0f64, 8.0, 9.0, ] ); assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, &[4.0f64, 5.0, 6.0]))); } #[test] fn test_cov_dmat() { let mat = DMat::from_row_vec( 5, 3, &[ 4.0f64, 2.0, 0.60, 4.2f64, 2.1, 0.59, 3.9f64, 2.0, 0.58, 4.3f64, 2.1, 0.62, 4.1f64, 2.2, 0.63 ] ); let expected = DMat::from_row_vec( 3, 3, &[ 0.025f64, 0.0075, 0.00175, 0.0075f64, 0.007, 0.00135, 0.00175f64, 0.00135, 0.00043 ] ); assert!(na::approx_eq(&na::cov(&mat), &expected)); } #[test] fn test_transpose_dmat() { let mat = DMat::from_row_vec( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert!(na::transpose(&na::transpose(&mat)) == mat); } #[test] fn test_row_slice_dmat() { let mat = DMat::from_row_vec( 5, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ] ); assert_eq!(&DVec::from_slice(4, &[1u32, 2, 3, 4]), &mat.row_slice(0, 0, 4)); assert_eq!(&DVec::from_slice(2, &[1u32, 2]), &mat.row_slice(0, 0, 2)); assert_eq!(&DVec::from_slice(2, &[10u32, 11]), &mat.row_slice(2, 1, 3)); assert_eq!(&DVec::from_slice(2, &[19u32, 20]), &mat.row_slice(4, 2, 4)); } #[test] fn test_col_slice_dmat() { let mat = DMat::from_row_vec( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert_eq!(&DVec::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &mat.col_slice(0, 0, 8)); assert_eq!(&DVec::from_slice(3, &[1u32, 5, 9]), &mat.col_slice(0, 0, 3)); assert_eq!(&DVec::from_slice(5, &[11u32, 15, 19, 23, 27]), &mat.col_slice(2, 2, 7)); assert_eq!(&DVec::from_slice(2, &[28u32, 32]), &mat.col_slice(3, 6, 8)); } #[test] fn test_dmat_from_vec() { let mat1 = DMat::from_row_vec( 8, 4, &[ 1i32, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); let mat2 = DMat::from_col_vec( 8, 4, &[ 1i32, 5, 9, 13, 17, 21, 25, 29, 2i32, 6, 10, 14, 18, 22, 26, 30, 3i32, 7, 11, 15, 19, 23, 27, 31, 4i32, 8, 12, 16, 20, 24, 28, 32 ] ); println!("mat1: {:?}, mat2: {:?}", mat1, mat2); assert!(mat1 == mat2); } #[test] fn test_dmat_addition() { let mat1 = DMat::from_row_vec( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMat::from_row_vec( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMat::from_row_vec( 2, 2, &[ 11.0, 22.0, 33.0, 44.0 ] ); assert!((mat1 + mat2) == res); } #[test] fn test_dmat_multiplication() { let mat1 = DMat::from_row_vec( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMat::from_row_vec( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMat::from_row_vec( 2, 2, &[ 70.0, 100.0, 150.0, 220.0 ] ); assert!((mat1 * mat2) == res); } // Tests multiplication of rectangular (non-square) matrices. #[test] fn test_dmat_multiplication_rect() { let mat1 = DMat::from_row_vec( 1, 2, &[ 1.0, 2.0, ] ); let mat2 = DMat::from_row_vec( 2, 3, &[ 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ] ); let res = DMat::from_row_vec( 1, 3, &[ 15.0, 18.0, 21.0, ] ); assert!((mat1.clone() * mat2.clone()) == res); assert!((&mat1 * mat2.clone()) == res); assert!((mat1.clone() * &mat2) == res); assert!((&mat1 * &mat2) == res); } #[test] fn test_dmat_subtraction() { let mat1 = DMat::from_row_vec( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMat::from_row_vec( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMat::from_row_vec( 2, 2, &[ -09.0, -18.0, -27.0, -36.0 ] ); assert!((mat1 - mat2) == res); } /* FIXME: review qr decomposition to make it work with DMat. #[test] fn test_qr() { for _ in 0usize .. 10 { let dim1: usize = random(); let dim2: usize = random(); let rows = min(40, max(dim1, dim2)); let cols = min(40, min(dim1, dim2)); let randmat: DMat = DMat::new_random(rows, cols); let (q, r) = na::qr(&randmat); let recomp = q * r; assert!(na::approx_eq(&randmat, &recomp)); } } */ #[test] fn test_qr_mat1() { test_qr_impl!(Mat1); } #[test] fn test_qr_mat2() { test_qr_impl!(Mat2); } #[test] fn test_qr_mat3() { test_qr_impl!(Mat3); } #[test] fn test_qr_mat4() { test_qr_impl!(Mat4); } #[test] fn test_qr_mat5() { test_qr_impl!(Mat5); } #[test] fn test_qr_mat6() { test_qr_impl!(Mat6); } #[test] fn test_eigen_qr_mat1() { test_eigen_qr_impl!(Mat1); } #[test] fn test_eigen_qr_mat2() { test_eigen_qr_impl!(Mat2); } #[test] fn test_eigen_qr_mat3() { test_eigen_qr_impl!(Mat3); } #[test] fn test_eigen_qr_mat4() { test_eigen_qr_impl!(Mat4); } #[test] fn test_eigen_qr_mat5() { test_eigen_qr_impl!(Mat5); } #[test] fn test_eigen_qr_mat6() { test_eigen_qr_impl!(Mat6); } #[test] fn test_from_fn() { let actual: DMat = DMat::from_fn(3, 4, |i, j| 10 * i + j); let expected: DMat = DMat::from_row_vec(3, 4, &[ 0_0, 0_1, 0_2, 0_3, 1_0, 1_1, 1_2, 1_3, 2_0, 2_1, 2_2, 2_3 ]); assert_eq!(actual, expected); } #[test] fn test_row_3() { let mat = Mat3::new(0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); let second_row = mat.row(1); let second_col = mat.col(1); assert!(second_row == Vec3::new(3.0, 4.0, 5.0)); assert!(second_col == Vec3::new(1.0, 4.0, 7.0)); } #[test] fn test_persp() { let mut p = Persp3::new(42.0f64, 0.5, 1.5, 10.0); let mut pm = PerspMat3::new(42.0f64, 0.5, 1.5, 10.0); assert!(p.to_mat() == pm.to_mat()); assert!(p.aspect() == 42.0); assert!(p.fov() == 0.5); assert!(p.znear() == 1.5); assert!(p.zfar() == 10.0); assert!(na::approx_eq(&pm.aspect(), &42.0)); assert!(na::approx_eq(&pm.fov(), &0.5)); assert!(na::approx_eq(&pm.znear(), &1.5)); assert!(na::approx_eq(&pm.zfar(), &10.0)); p.set_fov(0.1); pm.set_fov(0.1); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_znear(24.0); pm.set_znear(24.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_zfar(61.0); pm.set_zfar(61.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_aspect(23.0); pm.set_aspect(23.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); assert!(p.aspect() == 23.0); assert!(p.fov() == 0.1); assert!(p.znear() == 24.0); assert!(p.zfar() == 61.0); assert!(na::approx_eq(&pm.aspect(), &23.0)); assert!(na::approx_eq(&pm.fov(), &0.1)); assert!(na::approx_eq(&pm.znear(), &24.0)); assert!(na::approx_eq(&pm.zfar(), &61.0)); } #[test] fn test_ortho() { let mut p = Ortho3::new(42.0f64, 0.5, 1.5, 10.0); let mut pm = OrthoMat3::new(42.0f64, 0.5, 1.5, 10.0); assert!(p.to_mat() == pm.to_mat()); assert!(p.width() == 42.0); assert!(p.height() == 0.5); assert!(p.znear() == 1.5); assert!(p.zfar() == 10.0); assert!(na::approx_eq(&pm.width(), &42.0)); assert!(na::approx_eq(&pm.height(), &0.5)); assert!(na::approx_eq(&pm.znear(), &1.5)); assert!(na::approx_eq(&pm.zfar(), &10.0)); p.set_width(0.1); pm.set_width(0.1); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_znear(24.0); pm.set_znear(24.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_zfar(61.0); pm.set_zfar(61.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); p.set_height(23.0); pm.set_height(23.0); assert!(na::approx_eq(&p.to_mat(), pm.as_mat())); assert!(p.height() == 23.0); assert!(p.width() == 0.1); assert!(p.znear() == 24.0); assert!(p.zfar() == 61.0); assert!(na::approx_eq(&pm.height(), &23.0)); assert!(na::approx_eq(&pm.width(), &0.1)); assert!(na::approx_eq(&pm.znear(), &24.0)); assert!(na::approx_eq(&pm.zfar(), &61.0)); } #[test] fn test_cholesky_const() { let a : Mat3 = Mat3::::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0); let g : Mat3 = Mat3::::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_ok()); let v = result.unwrap(); assert!(na::approx_eq(&v, &g)); let recomp = v * na::transpose(&v); assert!(na::approx_eq(&recomp, &a)); } #[test] fn test_cholesky_not_spd() { let a : Mat3 = Mat3::::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_err()); } #[test] fn test_cholesky_not_symmetric() { let a : Mat2 = Mat2::::new(1.0, 1.0, -1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_err()); } #[test] fn test_cholesky_mat1() { test_cholesky_impl!(Mat1); } #[test] fn test_cholesky_mat2() { test_cholesky_impl!(Mat2); } #[test] fn test_cholesky_mat3() { test_cholesky_impl!(Mat3); } #[test] fn test_cholesky_mat4() { test_cholesky_impl!(Mat4); } #[test] fn test_cholesky_mat5() { test_cholesky_impl!(Mat5); } #[test] fn test_cholesky_mat6() { test_cholesky_impl!(Mat6); } #[test] fn test_hessenberg_mat1() { test_hessenberg_impl!(Mat1); } #[test] fn test_hessenberg_mat2() { test_hessenberg_impl!(Mat2); } #[test] fn test_hessenberg_mat3() { test_hessenberg_impl!(Mat3); } #[test] fn test_hessenberg_mat4() { test_hessenberg_impl!(Mat4); } #[test] fn test_hessenberg_mat5() { test_hessenberg_impl!(Mat5); } #[test] fn test_hessenberg_mat6() { test_hessenberg_impl!(Mat6); } #[test] fn test_transpose_square_mat() { let col_major_mat = &[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]; let num_rows = 4; let num_cols = 4; let mut mat = DMat::from_col_vec(num_rows, num_cols, col_major_mat); mat.transpose_mut(); for i in 0..num_rows { assert_eq!(&[0, 1, 2, 3], &mat.row_slice(i, 0, num_cols)[..]); } }