Before, it was too easy to use an out of place method instead of the inplace one since they name
were pretty mutch the same. This kind of confusion may lead to silly bugs very hard to understand.
Thus the following changes have been made when a method is available both inplace and out-of-place:
* inplace version keep a short name.
* out-of-place version are suffixed by `_cpy` (meaning `copy`), and are static methods.
Methods applying transformations (rotation, translation or general transform) are now prefixed by
`append`, and a `prepend` version is available too.
Also, free functions doing in-place modifications dont really make sense. They have been removed.
Here are the naming changes:
* `invert` -> `inv`
* `inverted` -> `Inv::inv_cpy`
* `transpose` -> `transpose`
* `transposed` -> `Transpose::transpose_cpy`
* `transform_by` -> `append_transformation`
* `transformed` -> `Transform::append_transformation_cpy`
* `rotate_by` -> `apppend_rotation`
* `rotated` -> `Rotation::append_rotation_cpy`
* `translate_by` -> `apppend_translation`
* `translate` -> `Translation::append_translation_cpy`
* `normalized` -> `Norm::normalize_cpy`
* `rotated_wrt_point` -> `RotationWithTranslation::append_rotation_wrt_point_cpy`
* `rotated_wrt_center` -> `RotationWithTranslation::append_rotation_wrt_center_cpy`
Note that using those static methods is very verbose, and using in-place methods require an
explicit import of the related trait.
This is a way to convince the user to use free functions most of the time.
Everything changed, hopefully for the best.
* everything is accessible from the `na` module. It re-export
everything and provides free functions (i-e: na::dot(a, b) instead of
a.dot(b)) for most functionalities.
* matrix/vector adaptors (Rotmat, Transform) are replaced by plain
types: Rot{2, 3, 4} for rotation matrices and Iso{2, 3, 4} for
isometries (rotation + translation). This old adaptors system was to
hard to understand and to document.
* each file related to data structures moved to the `structs` folder.
This makes the doc a lot more readable and make people prefer the
`na` module instead of individual small modules.
* Because `na` exists now, the modules `structs::vec` and
`structs::mat` dont re-export anything now.
As a side effect, this makes the documentation more readable.
Trait failes are merged in three files:
* operations.rs - for low-level matrix/vector operations
* geometry.rs - for operations with a clear, broadly known geometric meaning.
* structure.rs - for operations to access/alter the object inner structures.
Specialisations are moved to the `spec` folder.
Those traits are not really removed since rust cannot handle those multiple operator overloading
very well yet, making them sometimes unuseable on generic code.
Traits like `AbsoluteRotate` and `RotationWithTranslation` have been moved to a `comp` folder
containing any trait providing operations which are combination of several traits.
This is the same as Vec3 but with an extra field for padding. This is useful for applications
needing a power-of-two number of arguments (typically mixed CPU/GPU applications).
The corresponding matrix is not yet implemented.
Because of the unfortunate changes on type parameters resolution:
- the Dim trait now needs an useless parameter to infer the Self type.
- ApproxEps::epsilon() is broken.
CrossMatrix is a trait for vectors having a cross product representable as a matrix.
Row is a trait for Matrixces and Vectors, to access (by index) their rows.
The goal is to make traits less fine-grained for vectors, and reduce the amount of `use`.
- Scalar{Mul, Div} are removed, replaced by Mul<N, V> and Div<N, V>,
- Ring and DivisionRing are removed. Use Num instead.
- VectorSpace, Dot, and Norm are removed, replaced by the new, higher-level traits.
Add four traits:
- Vec: common operations on vectors. Replaces VectorSpace and Dot.
- AlgebraicVec: Vec + the old Norm trait.
- VecExt: Vec + every other traits vectors implement.
- AlgebraicVecExt: AlgebraicVec + VecExt.
Before, the `look_at` method aligned the `z` axis with the look_at direction.
This will be problematic in the future if we want to generalize that on n-dimension (the z axis
could not axis at all when n < 3).
Now, the `look_at` method aligns the `x` axis with the look_at direction. Thus we have a chance for
it to be generalizable on n-dimension, `n >= 1`.