This was inconsistently applied, with some types having <T>, some having
<T: Scalar>, and some having <T: RealField>.
This unifies all types to match the convention of Matrix:
Just declare <T> at type def time, and apply bounds on impls only.
A significant advantage of this approach is const fn construction. Const
fn generics currently still can't have trait bounds, so any generic
const fn needs to only move opaque types around. Construction methods
such as new_unchecked or from_parts can be made const by removing their
generic bounds after this PR.
Actual constification is left to a follow-up PR.
Note that na::Transform is _not_ loosened here, as it has more complicated
definition requirements.
Most call sites still invoke UB through `assume_init`. Said call sites instead invoke `unimplemented!()` if the `no_unsound_assume_init` feature is enabled, to make it easier to gradually fix them.
Progress towards #556.
This implements `UnitDualQuaternion` as an alternative to `Isometry3`
for representing 3D isometries, which also provides the `sclerp`
operation which can be used to perform screw-linear interpolation
between two unit dual quaternions.
The various nalgebra-lapack FooScalars are still Copy because they make use of uninitialized memory.
nalgebgra-glm Number still uses Copy because upstream `approx` requires it.
`./ci/test.sh` now passes locally.
Refactoring done via the following sed commands:
```bash
export RELEVANT_SOURCEFILES="$(find src -name '*.rs') $(find examples -name '*.rs')"
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Arbitrary\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Serialize\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Deserialize\)/N\1: Scalar + Copy + \2/' $f; do
export RELEVANT_SOURCEFILES="$(find nalgebra-glm -name '*.rs')"
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar,/N\1: Scalar + Copy,/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar>/N\1: Scalar + Copy>/' $f; done
for f in algebra-glm/src/traits.rs; do sed -i 's/Scalar + Ring/Scalar + Copy + Ring>/' $f; done # Number trait definition
```
This should semantically be a no-op, but enables refactorings to use non-Copy scalars on a case-by-case basis.
Also, the only instance of a `One + Zero` trait bound was changed into a `Zero + One` bound to match the others.
The following sed scripts were used in the refactoring (with each clause added to reduce the error count of `cargo check`):
```bash
export RELEVANT_SOURCEFILES="$(find src -name '*.rs') $(find examples -name '*.rs')"
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar,/N: Scalar+Copy,/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Field/N: Scalar + Copy + Field/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Zero/N: Scalar + Copy + Zero/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Closed/N: Scalar + Copy + Closed/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Eq/N: Scalar + Copy + Eq/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + PartialOrd/N: Scalar + Copy + PartialOrd/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + Zero/N: Scalar + Copy + Zero/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + PartialEq/N: Scalar + Copy + PartialEq/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar>/N: Scalar+Copy>/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + $bound/N: Scalar + Copy + $bound/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + $bound/N: Scalar + Copy + $bound/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar,/N\1: Scalar+Copy,/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + $trait/N: Scalar + Copy + $trait/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar + Superset/N\1: Scalar + Copy + Superset/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar + \([a-zA-Z]*Eq\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \([a-zA-Z]*Eq\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(hash::\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar {/N\1: Scalar + Copy {/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Zero\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Bounded\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Lattice\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Meet\|Join\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(fmt::\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Ring\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Hash\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Send\|Sync\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/One + Zero/Zero + One/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Zero\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \($marker\)/N\1: Scalar + Copy + \2/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar>/N\1: Scalar + Copy>/' $f; done
for f in $RELEVANT_SOURCEFILES; do sed -i 's/Scalar+Copy/Scalar + Copy/' $f; done
```
The previous implementation had stability problems for small angles due
to the behaviour of the arccosine it used. In particular, it needs a
hack to handle "cosines" greater than 1 and the smallest obtainable
nonzero angle for e.g. f32 is acos(1-2^-22) = 0.00069...
These problems can be fixed by using an arctangent-based formula.
This adds `transform_point`, `transform_vector`,
`inverse_transform_point` and `inverse_transform_vector` as inherent
methods on the applicable geometric transformation structures, such
that they can be used without the need to import the `Transformation`
and `ProjectiveTransformation` traits from `alga`.