diff --git a/nalgebra-lapack/src/generalized_eigenvalues.rs b/nalgebra-lapack/src/generalized_eigenvalues.rs index f4f3bc49..5d1e3ace 100644 --- a/nalgebra-lapack/src/generalized_eigenvalues.rs +++ b/nalgebra-lapack/src/generalized_eigenvalues.rs @@ -71,19 +71,6 @@ where /// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors /// via the raw returns from LAPACK's dggev and sggev routines /// - /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j). - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B . - /// where u(j)**H is the conjugate-transpose of u(j). - /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.") @@ -92,19 +79,6 @@ where /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's /// dggev and sggev routines /// - /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j). - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B . - /// where u(j)**H is the conjugate-transpose of u(j). - /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { assert!( @@ -186,17 +160,6 @@ where /// as columns. /// The second matrix contains the right eigenvectors of the generalized eigenvalues /// as columns. - /// - /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// A * v(j) = lambda(j) * B * v(j) - /// - /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) - /// of (A,B) satisfies - /// - /// u(j)**H * A = lambda(j) * u(j)**H * B - /// where u(j)**H is the conjugate-transpose of u(j). pub fn eigenvectors(&self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: @@ -262,7 +225,7 @@ where (l, r) } - /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) + /// Outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) /// straight from LAPACK #[must_use] pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D>