Refactor ops to use new Op type instead of separate Transpose flag

This commit is contained in:
Andreas Longva 2020-12-21 15:09:29 +01:00
parent c6a8fcdee2
commit fe8592fde1
5 changed files with 299 additions and 211 deletions

View File

@ -5,7 +5,7 @@ use crate::ops::serial::{spadd_csr, spadd_pattern, spmm_pattern, spmm_csr};
use nalgebra::{ClosedAdd, ClosedMul, Scalar}; use nalgebra::{ClosedAdd, ClosedMul, Scalar};
use num_traits::{Zero, One}; use num_traits::{Zero, One};
use std::sync::Arc; use std::sync::Arc;
use crate::ops::Transpose; use crate::ops::{Op};
impl<'a, T> Add<&'a CsrMatrix<T>> for &'a CsrMatrix<T> impl<'a, T> Add<&'a CsrMatrix<T>> for &'a CsrMatrix<T>
where where
@ -21,8 +21,8 @@ where
// We are giving data that is valid by definition, so it is safe to unwrap below // We are giving data that is valid by definition, so it is safe to unwrap below
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values) let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
.unwrap(); .unwrap();
spadd_csr(&mut result, T::zero(), T::one(), Transpose(false), &self).unwrap(); spadd_csr(&mut result, T::zero(), T::one(), Op::NoOp(&self)).unwrap();
spadd_csr(&mut result, T::one(), T::one(), Transpose(false), &rhs).unwrap(); spadd_csr(&mut result, T::one(), T::one(), Op::NoOp(&rhs)).unwrap();
result result
} }
} }
@ -35,7 +35,7 @@ where
fn add(mut self, rhs: &'a CsrMatrix<T>) -> Self::Output { fn add(mut self, rhs: &'a CsrMatrix<T>) -> Self::Output {
if Arc::ptr_eq(self.pattern(), rhs.pattern()) { if Arc::ptr_eq(self.pattern(), rhs.pattern()) {
spadd_csr(&mut self, T::one(), T::one(), Transpose(false), &rhs).unwrap(); spadd_csr(&mut self, T::one(), T::one(), Op::NoOp(rhs)).unwrap();
self self
} else { } else {
&self + rhs &self + rhs
@ -93,10 +93,8 @@ impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T>
spmm_csr(&mut result, spmm_csr(&mut result,
T::zero(), T::zero(),
T::one(), T::one(),
Transpose(false), Op::NoOp(a),
a, Op::NoOp(b))
Transpose(false),
b)
.expect("Internal error: spmm failed (please debug)."); .expect("Internal error: spmm failed (please debug).");
result result
}); });

View File

@ -4,14 +4,54 @@ mod impl_std_ops;
pub mod serial; pub mod serial;
/// TODO /// TODO
#[derive(Copy, Clone, Debug, PartialEq, Eq)] #[derive(Debug, Clone, PartialEq, Eq)]
pub struct Transpose(pub bool); pub enum Op<T> {
impl Transpose {
/// TODO /// TODO
pub fn to_bool(&self) -> bool { NoOp(T),
self.0 /// TODO
Transpose(T),
}
impl<T> Op<T> {
/// TODO
pub fn inner_ref(&self) -> &T {
match self {
Op::NoOp(obj) => &obj,
Op::Transpose(obj) => &obj
} }
} }
/// TODO
pub fn as_ref(&self) -> Op<&T> {
match self {
Op::NoOp(obj) => Op::NoOp(&obj),
Op::Transpose(obj) => Op::Transpose(&obj)
}
}
/// TODO
pub fn convert<U>(self) -> Op<U>
where T: Into<U>
{
match self {
Op::NoOp(obj) => Op::NoOp(obj.into()),
Op::Transpose(obj) => Op::Transpose(obj.into())
}
}
/// TODO
/// TODO: Rewrite the other functions by leveraging this one
pub fn map_same_op<U, F: FnOnce(T) -> U>(self, f: F) -> Op<U> {
match self {
Op::NoOp(obj) => Op::NoOp(f(obj)),
Op::Transpose(obj) => Op::Transpose(f(obj))
}
}
}
impl<T> From<T> for Op<T> {
fn from(obj: T) -> Self {
Self::NoOp(obj)
}
}

View File

@ -1,5 +1,5 @@
use crate::csr::CsrMatrix; use crate::csr::CsrMatrix;
use crate::ops::{Transpose}; use crate::ops::{Op};
use crate::SparseEntryMut; use crate::SparseEntryMut;
use crate::ops::serial::{OperationError, OperationErrorType}; use crate::ops::serial::{OperationError, OperationErrorType};
use nalgebra::{Scalar, DMatrixSlice, ClosedAdd, ClosedMul, DMatrixSliceMut}; use nalgebra::{Scalar, DMatrixSlice, ClosedAdd, ClosedMul, DMatrixSliceMut};
@ -7,33 +7,31 @@ use num_traits::{Zero, One};
use std::sync::Arc; use std::sync::Arc;
use std::borrow::Cow; use std::borrow::Cow;
/// Sparse-dense matrix-matrix multiplication `C <- beta * C + alpha * trans(A) * trans(B)`. /// Sparse-dense matrix-matrix multiplication `C <- beta * C + alpha * op(A) * op(B)`.
pub fn spmm_csr_dense<'a, T>(c: impl Into<DMatrixSliceMut<'a, T>>, pub fn spmm_csr_dense<'a, T>(c: impl Into<DMatrixSliceMut<'a, T>>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<&CsrMatrix<T>>,
a: &CsrMatrix<T>, b: Op<impl Into<DMatrixSlice<'a, T>>>)
trans_b: Transpose,
b: impl Into<DMatrixSlice<'a, T>>)
where where
T: Scalar + ClosedAdd + ClosedMul + Zero + One T: Scalar + ClosedAdd + ClosedMul + Zero + One
{ {
spmm_csr_dense_(c.into(), beta, alpha, trans_a, a, trans_b, b.into()) let b = b.convert();
spmm_csr_dense_(c.into(), beta, alpha, a, b)
} }
fn spmm_csr_dense_<T>(mut c: DMatrixSliceMut<T>, fn spmm_csr_dense_<T>(mut c: DMatrixSliceMut<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<&CsrMatrix<T>>,
a: &CsrMatrix<T>, b: Op<DMatrixSlice<T>>)
trans_b: Transpose,
b: DMatrixSlice<T>)
where where
T: Scalar + ClosedAdd + ClosedMul + Zero + One T: Scalar + ClosedAdd + ClosedMul + Zero + One
{ {
assert_compatible_spmm_dims!(c, a, b, trans_a, trans_b); assert_compatible_spmm_dims!(c, a, b);
if trans_a.to_bool() { match a {
Op::Transpose(ref a) => {
// In this case, we have to pre-multiply C by beta // In this case, we have to pre-multiply C by beta
c *= beta; c *= beta;
@ -42,27 +40,34 @@ where
for (&i, a_ki) in a_row_k.col_indices().iter().zip(a_row_k.values()) { for (&i, a_ki) in a_row_k.col_indices().iter().zip(a_row_k.values()) {
let gamma_ki = alpha.inlined_clone() * a_ki.inlined_clone(); let gamma_ki = alpha.inlined_clone() * a_ki.inlined_clone();
let mut c_row_i = c.row_mut(i); let mut c_row_i = c.row_mut(i);
if trans_b.to_bool() { match b {
let b_col_k = b.column(k); Op::NoOp(ref b) => {
for (c_ij, b_jk) in c_row_i.iter_mut().zip(b_col_k.iter()) {
*c_ij += gamma_ki.inlined_clone() * b_jk.inlined_clone();
}
} else {
let b_row_k = b.row(k); let b_row_k = b.row(k);
for (c_ij, b_kj) in c_row_i.iter_mut().zip(b_row_k.iter()) { for (c_ij, b_kj) in c_row_i.iter_mut().zip(b_row_k.iter()) {
*c_ij += gamma_ki.inlined_clone() * b_kj.inlined_clone(); *c_ij += gamma_ki.inlined_clone() * b_kj.inlined_clone();
} }
},
Op::Transpose(ref b) => {
let b_col_k = b.column(k);
for (c_ij, b_jk) in c_row_i.iter_mut().zip(b_col_k.iter()) {
*c_ij += gamma_ki.inlined_clone() * b_jk.inlined_clone();
}
},
} }
} }
} }
} else { },
Op::NoOp(ref a) => {
for j in 0..c.ncols() { for j in 0..c.ncols() {
let mut c_col_j = c.column_mut(j); let mut c_col_j = c.column_mut(j);
for (c_ij, a_row_i) in c_col_j.iter_mut().zip(a.row_iter()) { for (c_ij, a_row_i) in c_col_j.iter_mut().zip(a.row_iter()) {
let mut dot_ij = T::zero(); let mut dot_ij = T::zero();
for (&k, a_ik) in a_row_i.col_indices().iter().zip(a_row_i.values()) { for (&k, a_ik) in a_row_i.col_indices().iter().zip(a_row_i.values()) {
let b_contrib = let b_contrib =
if trans_b.to_bool() { b.index((j, k)) } else { b.index((k, j)) }; match b {
Op::NoOp(ref b) => b.index((k, j)),
Op::Transpose(ref b) => b.index((j, k))
};
dot_ij += a_ik.inlined_clone() * b_contrib.inlined_clone(); dot_ij += a_ik.inlined_clone() * b_contrib.inlined_clone();
} }
*c_ij = beta.inlined_clone() * c_ij.inlined_clone() + alpha.inlined_clone() * dot_ij; *c_ij = beta.inlined_clone() * c_ij.inlined_clone() + alpha.inlined_clone() * dot_ij;
@ -70,6 +75,7 @@ where
} }
} }
} }
}
fn spadd_csr_unexpected_entry() -> OperationError { fn spadd_csr_unexpected_entry() -> OperationError {
OperationError::from_type_and_message( OperationError::from_type_and_message(
@ -77,32 +83,31 @@ fn spadd_csr_unexpected_entry() -> OperationError {
String::from("Found entry in `a` that is not present in `c`.")) String::from("Found entry in `a` that is not present in `c`."))
} }
/// Sparse matrix addition `C <- beta * C + alpha * trans(A)`. /// Sparse matrix addition `C <- beta * C + alpha * op(A)`.
/// ///
/// If the pattern of `c` does not accommodate all the non-zero entries in `a`, an error is /// If the pattern of `c` does not accommodate all the non-zero entries in `a`, an error is
/// returned. /// returned.
pub fn spadd_csr<T>(c: &mut CsrMatrix<T>, pub fn spadd_csr<T>(c: &mut CsrMatrix<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<&CsrMatrix<T>>)
a: &CsrMatrix<T>)
-> Result<(), OperationError> -> Result<(), OperationError>
where where
T: Scalar + ClosedAdd + ClosedMul + Zero + One T: Scalar + ClosedAdd + ClosedMul + Zero + One
{ {
assert_compatible_spadd_dims!(c, a, trans_a); assert_compatible_spadd_dims!(c, a);
// TODO: Change CsrMatrix::pattern() to return `&Arc` instead of `Arc` // TODO: Change CsrMatrix::pattern() to return `&Arc` instead of `Arc`
if Arc::ptr_eq(&c.pattern(), &a.pattern()) { if Arc::ptr_eq(&c.pattern(), &a.inner_ref().pattern()) {
// Special fast path: The two matrices have *exactly* the same sparsity pattern, // Special fast path: The two matrices have *exactly* the same sparsity pattern,
// so we only need to sum the value arrays // so we only need to sum the value arrays
for (c_ij, a_ij) in c.values_mut().iter_mut().zip(a.values()) { for (c_ij, a_ij) in c.values_mut().iter_mut().zip(a.inner_ref().values()) {
let (alpha, beta) = (alpha.inlined_clone(), beta.inlined_clone()); let (alpha, beta) = (alpha.inlined_clone(), beta.inlined_clone());
*c_ij = beta * c_ij.inlined_clone() + alpha * a_ij.inlined_clone(); *c_ij = beta * c_ij.inlined_clone() + alpha * a_ij.inlined_clone();
} }
Ok(()) Ok(())
} else { } else {
if trans_a.to_bool() if let Op::Transpose(a) = a
{ {
if beta != T::one() { if beta != T::one() {
for c_ij in c.values_mut() { for c_ij in c.values_mut() {
@ -120,7 +125,7 @@ where
} }
} }
} }
} else { } else if let Op::NoOp(a) = a {
for (mut c_row_i, a_row_i) in c.row_iter_mut().zip(a.row_iter()) { for (mut c_row_i, a_row_i) in c.row_iter_mut().zip(a.row_iter()) {
if beta != T::one() { if beta != T::one() {
for c_ij in c_row_i.values_mut() { for c_ij in c_row_i.values_mut() {
@ -160,17 +165,18 @@ pub fn spmm_csr<'a, T>(
c: &mut CsrMatrix<T>, c: &mut CsrMatrix<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<&CsrMatrix<T>>,
a: &CsrMatrix<T>, b: Op<&CsrMatrix<T>>)
trans_b: Transpose,
b: &CsrMatrix<T>)
-> Result<(), OperationError> -> Result<(), OperationError>
where where
T: Scalar + ClosedAdd + ClosedMul + Zero + One T: Scalar + ClosedAdd + ClosedMul + Zero + One
{ {
assert_compatible_spmm_dims!(c, a, b, trans_a, trans_b); assert_compatible_spmm_dims!(c, a, b);
if !trans_a.to_bool() && !trans_b.to_bool() { use Op::{NoOp, Transpose};
match (&a, &b) {
(NoOp(ref a), NoOp(ref b)) => {
for (mut c_row_i, a_row_i) in c.row_iter_mut().zip(a.row_iter()) { for (mut c_row_i, a_row_i) in c.row_iter_mut().zip(a.row_iter()) {
for c_ij in c_row_i.values_mut() { for c_ij in c_row_i.values_mut() {
*c_ij = beta.inlined_clone() * c_ij.inlined_clone(); *c_ij = beta.inlined_clone() * c_ij.inlined_clone();
@ -194,22 +200,26 @@ where
} }
} }
Ok(()) Ok(())
} else { },
_ => {
// Currently we handle transposition by explicitly precomputing transposed matrices // Currently we handle transposition by explicitly precomputing transposed matrices
// and calling the operation again without transposition // and calling the operation again without transposition
// TODO: At least use workspaces to allow control of allocations. Maybe // TODO: At least use workspaces to allow control of allocations. Maybe
// consider implementing certain patterns (like A^T * B) explicitly // consider implementing certain patterns (like A^T * B) explicitly
let a_ref: &CsrMatrix<T> = a.inner_ref();
let b_ref: &CsrMatrix<T> = b.inner_ref();
let (a, b) = { let (a, b) = {
use Cow::*; use Cow::*;
match (trans_a, trans_b) { match (&a, &b) {
(Transpose(false), Transpose(false)) => unreachable!(), (NoOp(_), NoOp(_)) => unreachable!(),
(Transpose(true), Transpose(false)) => (Owned(a.transpose()), Borrowed(b)), (Transpose(ref a), NoOp(_)) => (Owned(a.transpose()), Borrowed(b_ref)),
(Transpose(false), Transpose(true)) => (Borrowed(a), Owned(b.transpose())), (NoOp(_), Transpose(ref b)) => (Borrowed(a_ref), Owned(b.transpose())),
(Transpose(true), Transpose(true)) => (Owned(a.transpose()), Owned(b.transpose())) (Transpose(ref a), Transpose(ref b)) => (Owned(a.transpose()), Owned(b.transpose()))
} }
}; };
spmm_csr(c, beta, alpha, Transpose(false), a.as_ref(), Transpose(false), b.as_ref()) spmm_csr(c, beta, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
}
} }
} }

View File

@ -2,46 +2,47 @@
#[macro_use] #[macro_use]
macro_rules! assert_compatible_spmm_dims { macro_rules! assert_compatible_spmm_dims {
($c:expr, $a:expr, $b:expr, $trans_a:expr, $trans_b:expr) => { ($c:expr, $a:expr, $b:expr) => {
use crate::ops::Transpose; {
match ($trans_a, $trans_b) { use crate::ops::Op::{NoOp, Transpose};
(Transpose(false), Transpose(false)) => { match (&$a, &$b) {
assert_eq!($c.nrows(), $a.nrows(), "C.nrows() != A.nrows()"); (NoOp(ref a), NoOp(ref b)) => {
assert_eq!($c.ncols(), $b.ncols(), "C.ncols() != B.ncols()"); assert_eq!($c.nrows(), a.nrows(), "C.nrows() != A.nrows()");
assert_eq!($a.ncols(), $b.nrows(), "A.ncols() != B.nrows()"); assert_eq!($c.ncols(), b.ncols(), "C.ncols() != B.ncols()");
assert_eq!(a.ncols(), b.nrows(), "A.ncols() != B.nrows()");
}, },
(Transpose(true), Transpose(false)) => { (Transpose(ref a), NoOp(ref b)) => {
assert_eq!($c.nrows(), $a.ncols(), "C.nrows() != A.ncols()"); assert_eq!($c.nrows(), a.ncols(), "C.nrows() != A.ncols()");
assert_eq!($c.ncols(), $b.ncols(), "C.ncols() != B.ncols()"); assert_eq!($c.ncols(), b.ncols(), "C.ncols() != B.ncols()");
assert_eq!($a.nrows(), $b.nrows(), "A.nrows() != B.nrows()"); assert_eq!(a.nrows(), b.nrows(), "A.nrows() != B.nrows()");
}, },
(Transpose(false), Transpose(true)) => { (NoOp(ref a), Transpose(ref b)) => {
assert_eq!($c.nrows(), $a.nrows(), "C.nrows() != A.nrows()"); assert_eq!($c.nrows(), a.nrows(), "C.nrows() != A.nrows()");
assert_eq!($c.ncols(), $b.nrows(), "C.ncols() != B.nrows()"); assert_eq!($c.ncols(), b.nrows(), "C.ncols() != B.nrows()");
assert_eq!($a.ncols(), $b.ncols(), "A.ncols() != B.ncols()"); assert_eq!(a.ncols(), b.ncols(), "A.ncols() != B.ncols()");
}, },
(Transpose(true), Transpose(true)) => { (Transpose(ref a), Transpose(ref b)) => {
assert_eq!($c.nrows(), $a.ncols(), "C.nrows() != A.ncols()"); assert_eq!($c.nrows(), a.ncols(), "C.nrows() != A.ncols()");
assert_eq!($c.ncols(), $b.nrows(), "C.ncols() != B.nrows()"); assert_eq!($c.ncols(), b.nrows(), "C.ncols() != B.nrows()");
assert_eq!($a.nrows(), $b.ncols(), "A.nrows() != B.ncols()"); assert_eq!(a.nrows(), b.ncols(), "A.nrows() != B.ncols()");
}
} }
} }
} }
} }
#[macro_use] #[macro_use]
macro_rules! assert_compatible_spadd_dims { macro_rules! assert_compatible_spadd_dims {
($c:expr, $a:expr, $trans_a:expr) => { ($c:expr, $a:expr) => {
use crate::ops::Transpose; use crate::ops::Op;
match $trans_a { match $a {
Transpose(false) => { Op::NoOp(a) => {
assert_eq!($c.nrows(), $a.nrows(), "C.nrows() != A.nrows()"); assert_eq!($c.nrows(), a.nrows(), "C.nrows() != A.nrows()");
assert_eq!($c.ncols(), $a.ncols(), "C.ncols() != A.ncols()"); assert_eq!($c.ncols(), a.ncols(), "C.ncols() != A.ncols()");
}, },
Transpose(true) => { Op::Transpose(a) => {
assert_eq!($c.nrows(), $a.ncols(), "C.nrows() != A.ncols()"); assert_eq!($c.nrows(), a.ncols(), "C.nrows() != A.ncols()");
assert_eq!($c.ncols(), $a.nrows(), "C.ncols() != A.nrows()"); assert_eq!($c.ncols(), a.nrows(), "C.ncols() != A.nrows()");
} }
} }

View File

@ -1,7 +1,7 @@
use crate::common::{csr_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ, use crate::common::{csr_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ,
PROPTEST_I32_VALUE_STRATEGY}; PROPTEST_I32_VALUE_STRATEGY};
use nalgebra_sparse::ops::serial::{spmm_csr_dense, spadd_pattern, spmm_pattern, spadd_csr, spmm_csr}; use nalgebra_sparse::ops::serial::{spmm_csr_dense, spadd_pattern, spmm_pattern, spadd_csr, spmm_csr};
use nalgebra_sparse::ops::{Transpose}; use nalgebra_sparse::ops::{Op};
use nalgebra_sparse::csr::CsrMatrix; use nalgebra_sparse::csr::CsrMatrix;
use nalgebra_sparse::proptest::{csr, sparsity_pattern}; use nalgebra_sparse::proptest::{csr, sparsity_pattern};
use nalgebra_sparse::pattern::SparsityPattern; use nalgebra_sparse::pattern::SparsityPattern;
@ -28,10 +28,8 @@ struct SpmmCsrDenseArgs<T: Scalar> {
c: DMatrix<T>, c: DMatrix<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<CsrMatrix<T>>,
a: CsrMatrix<T>, b: Op<DMatrix<T>>,
trans_b: Transpose,
b: DMatrix<T>,
} }
/// Returns matrices C, A and B with compatible dimensions such that it can be used /// Returns matrices C, A and B with compatible dimensions such that it can be used
@ -48,10 +46,10 @@ fn spmm_csr_dense_args_strategy() -> impl Strategy<Value=SpmmCsrDenseArgs<i32>>
(c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone()) (c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone())
.prop_flat_map(move |(c, common_dim, trans_a, trans_b)| { .prop_flat_map(move |(c, common_dim, trans_a, trans_b)| {
let a_shape = let a_shape =
if trans_a.to_bool() { (common_dim, c.nrows()) } if trans_a { (common_dim, c.nrows()) }
else { (c.nrows(), common_dim) }; else { (c.nrows(), common_dim) };
let b_shape = let b_shape =
if trans_b.to_bool() { (c.ncols(), common_dim) } if trans_b { (c.ncols(), common_dim) }
else { (common_dim, c.ncols()) }; else { (common_dim, c.ncols()) };
let a = csr(value_strategy.clone(), Just(a_shape.0), Just(a_shape.1), max_nnz); let a = csr(value_strategy.clone(), Just(a_shape.0), Just(a_shape.1), max_nnz);
let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1); let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1);
@ -66,10 +64,8 @@ fn spmm_csr_dense_args_strategy() -> impl Strategy<Value=SpmmCsrDenseArgs<i32>>
c, c,
beta, beta,
alpha, alpha,
trans_a, a: if trans_a { Op::Transpose(a) } else { Op::NoOp(a) },
a, b: if trans_b { Op::Transpose(b) } else { Op::NoOp(b) },
trans_b,
b,
} }
}) })
} }
@ -79,14 +75,13 @@ struct SpaddCsrArgs<T> {
c: CsrMatrix<T>, c: CsrMatrix<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<CsrMatrix<T>>,
a: CsrMatrix<T>,
} }
fn spadd_csr_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> { fn spadd_csr_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> {
let value_strategy = PROPTEST_I32_VALUE_STRATEGY; let value_strategy = PROPTEST_I32_VALUE_STRATEGY;
spadd_build_pattern_strategy() spadd_pattern_strategy()
.prop_flat_map(move |(a_pattern, b_pattern)| { .prop_flat_map(move |(a_pattern, b_pattern)| {
let c_pattern = spadd_pattern(&a_pattern, &b_pattern); let c_pattern = spadd_pattern(&a_pattern, &b_pattern);
@ -99,8 +94,8 @@ fn spadd_csr_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> {
let c = CsrMatrix::try_from_pattern_and_values(Arc::new(c_pattern), c_values).unwrap(); let c = CsrMatrix::try_from_pattern_and_values(Arc::new(c_pattern), c_values).unwrap();
let a = CsrMatrix::try_from_pattern_and_values(Arc::new(a_pattern), a_values).unwrap(); let a = CsrMatrix::try_from_pattern_and_values(Arc::new(a_pattern), a_values).unwrap();
let a = if trans_a.to_bool() { a.transpose() } else { a }; let a = if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) };
SpaddCsrArgs { c, beta, alpha, trans_a, a } SpaddCsrArgs { c, beta, alpha, a }
}) })
} }
@ -108,8 +103,20 @@ fn dense_strategy() -> impl Strategy<Value=DMatrix<i32>> {
matrix(PROPTEST_I32_VALUE_STRATEGY, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM) matrix(PROPTEST_I32_VALUE_STRATEGY, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM)
} }
fn trans_strategy() -> impl Strategy<Value=Transpose> + Clone { fn trans_strategy() -> impl Strategy<Value=bool> + Clone {
proptest::bool::ANY.prop_map(Transpose) proptest::bool::ANY
}
/// Wraps the values of the given strategy in `Op`, producing both transposed and non-transposed
/// values.
fn op_strategy<S: Strategy>(strategy: S) -> impl Strategy<Value=Op<S::Value>> {
let is_transposed = proptest::bool::ANY;
(strategy, is_transposed)
.prop_map(|(obj, is_trans)| if is_trans {
Op::Transpose(obj)
} else {
Op::NoOp(obj)
})
} }
fn pattern_strategy() -> impl Strategy<Value=SparsityPattern> { fn pattern_strategy() -> impl Strategy<Value=SparsityPattern> {
@ -117,7 +124,7 @@ fn pattern_strategy() -> impl Strategy<Value=SparsityPattern> {
} }
/// Constructs pairs (a, b) where a and b have the same dimensions /// Constructs pairs (a, b) where a and b have the same dimensions
fn spadd_build_pattern_strategy() -> impl Strategy<Value=(SparsityPattern, SparsityPattern)> { fn spadd_pattern_strategy() -> impl Strategy<Value=(SparsityPattern, SparsityPattern)> {
pattern_strategy() pattern_strategy()
.prop_flat_map(|a| { .prop_flat_map(|a| {
let b = sparsity_pattern(Just(a.major_dim()), Just(a.minor_dim()), PROPTEST_MAX_NNZ); let b = sparsity_pattern(Just(a.major_dim()), Just(a.minor_dim()), PROPTEST_MAX_NNZ);
@ -139,10 +146,8 @@ struct SpmmCsrArgs<T> {
c: CsrMatrix<T>, c: CsrMatrix<T>,
beta: T, beta: T,
alpha: T, alpha: T,
trans_a: Transpose, a: Op<CsrMatrix<T>>,
a: CsrMatrix<T>, b: Op<CsrMatrix<T>>,
trans_b: Transpose,
b: CsrMatrix<T>
} }
fn spmm_csr_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> { fn spmm_csr_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
@ -170,10 +175,8 @@ fn spmm_csr_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
c, c,
beta, beta,
alpha, alpha,
trans_a, a: if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) },
a: if trans_a.to_bool() { a.transpose() } else { a }, b: if trans_b { Op::Transpose(b.transpose()) } else { Op::NoOp(b) }
trans_b,
b: if trans_b.to_bool() { b.transpose() } else { b }
} }
}) })
} }
@ -182,52 +185,67 @@ fn spmm_csr_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
fn dense_gemm<'a>(c: impl Into<DMatrixSliceMut<'a, i32>>, fn dense_gemm<'a>(c: impl Into<DMatrixSliceMut<'a, i32>>,
beta: i32, beta: i32,
alpha: i32, alpha: i32,
trans_a: Transpose, a: Op<impl Into<DMatrixSlice<'a, i32>>>,
a: impl Into<DMatrixSlice<'a, i32>>, b: Op<impl Into<DMatrixSlice<'a, i32>>>)
trans_b: Transpose,
b: impl Into<DMatrixSlice<'a, i32>>)
{ {
let mut c = c.into(); let mut c = c.into();
let a = a.into(); let a = a.convert();
let b = b.into(); let b = b.convert();
match (trans_a, trans_b) { use Op::{NoOp, Transpose};
(Transpose(false), Transpose(false)) => c.gemm(alpha, &a, &b, beta), match (a, b) {
(Transpose(true), Transpose(false)) => c.gemm(alpha, &a.transpose(), &b, beta), (NoOp(a), NoOp(b)) => c.gemm(alpha, &a, &b, beta),
(Transpose(false), Transpose(true)) => c.gemm(alpha, &a, &b.transpose(), beta), (Transpose(a), NoOp(b)) => c.gemm(alpha, &a.transpose(), &b, beta),
(Transpose(true), Transpose(true)) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta) (NoOp(a), Transpose(b)) => c.gemm(alpha, &a, &b.transpose(), beta),
}; (Transpose(a), Transpose(b)) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta)
}
} }
proptest! { proptest! {
#[test] #[test]
fn spmm_csr_dense_agrees_with_dense_result( fn spmm_csr_dense_agrees_with_dense_result(
SpmmCsrDenseArgs { c, beta, alpha, trans_a, a, trans_b, b } SpmmCsrDenseArgs { c, beta, alpha, a, b }
in spmm_csr_dense_args_strategy() in spmm_csr_dense_args_strategy()
) { ) {
let mut spmm_result = c.clone(); let mut spmm_result = c.clone();
spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); spmm_csr_dense(&mut spmm_result, beta, alpha, a.as_ref(), b.as_ref());
let mut gemm_result = c.clone(); let mut gemm_result = c.clone();
dense_gemm(&mut gemm_result, beta, alpha, trans_a, &DMatrix::from(&a), trans_b, &b); let a_dense = a.map_same_op(|a| DMatrix::from(&a));
dense_gemm(&mut gemm_result, beta, alpha, a_dense.as_ref(), b.as_ref());
prop_assert_eq!(spmm_result, gemm_result); prop_assert_eq!(spmm_result, gemm_result);
} }
#[test] #[test]
fn spmm_csr_dense_panics_on_dim_mismatch( fn spmm_csr_dense_panics_on_dim_mismatch(
(alpha, beta, c, a, b, trans_a, trans_b) (alpha, beta, c, a, b)
in (-5 ..= 5, -5 ..= 5, dense_strategy(), csr_strategy(), in (PROPTEST_I32_VALUE_STRATEGY,
dense_strategy(), trans_strategy(), trans_strategy()) PROPTEST_I32_VALUE_STRATEGY,
dense_strategy(),
op_strategy(csr_strategy()),
op_strategy(dense_strategy()))
) { ) {
// We refer to `A * B` as the "product" // We refer to `A * B` as the "product"
let product_rows = if trans_a.to_bool() { a.ncols() } else { a.nrows() }; let product_rows = match &a {
let product_cols = if trans_b.to_bool() { b.nrows() } else { b.ncols() }; Op::NoOp(ref a) => a.nrows(),
Op::Transpose(ref a) => a.ncols(),
};
let product_cols = match &b {
Op::NoOp(ref b) => b.ncols(),
Op::Transpose(ref b) => b.nrows(),
};
// Determine the common dimension in the product // Determine the common dimension in the product
// from the perspective of a and b, respectively // from the perspective of a and b, respectively
let product_a_common = if trans_a.to_bool() { a.nrows() } else { a.ncols() }; let product_a_common = match &a {
let product_b_common = if trans_b.to_bool() { b.ncols() } else { b.nrows() }; Op::NoOp(ref a) => a.ncols(),
Op::Transpose(ref a) => a.nrows(),
};
let product_b_common = match &b {
Op::NoOp(ref b) => b.nrows(),
Op::Transpose(ref b) => b.ncols()
};
let dims_are_compatible = product_rows == c.nrows() let dims_are_compatible = product_rows == c.nrows()
&& product_cols == c.ncols() && product_cols == c.ncols()
@ -239,7 +257,7 @@ proptest! {
let result = catch_unwind(|| { let result = catch_unwind(|| {
let mut spmm_result = c.clone(); let mut spmm_result = c.clone();
spmm_csr_dense(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b); spmm_csr_dense(&mut spmm_result, beta, alpha, a.as_ref(), b.as_ref());
}); });
prop_assert!(result.is_err(), prop_assert!(result.is_err(),
@ -247,7 +265,7 @@ proptest! {
} }
#[test] #[test]
fn spadd_pattern_test((a, b) in spadd_build_pattern_strategy()) fn spadd_pattern_test((a, b) in spadd_pattern_strategy())
{ {
// (a, b) are dimensionally compatible patterns // (a, b) are dimensionally compatible patterns
let pattern_result = spadd_pattern(&a, &b); let pattern_result = spadd_pattern(&a, &b);
@ -269,16 +287,18 @@ proptest! {
} }
#[test] #[test]
fn spadd_csr_test(SpaddCsrArgs { c, beta, alpha, trans_a, a } in spadd_csr_args_strategy()) { fn spadd_csr_test(SpaddCsrArgs { c, beta, alpha, a } in spadd_csr_args_strategy()) {
// Test that we get the expected result by comparing to an equivalent dense operation // Test that we get the expected result by comparing to an equivalent dense operation
// (here we give in the C matrix, so the sparsity pattern is essentially fixed) // (here we give in the C matrix, so the sparsity pattern is essentially fixed)
let mut c_sparse = c.clone(); let mut c_sparse = c.clone();
spadd_csr(&mut c_sparse, beta, alpha, trans_a, &a).unwrap(); spadd_csr(&mut c_sparse, beta, alpha, a.as_ref()).unwrap();
let mut c_dense = DMatrix::from(&c); let mut c_dense = DMatrix::from(&c);
let op_a_dense = DMatrix::from(&a); let op_a_dense = match a {
let op_a_dense = if trans_a.to_bool() { op_a_dense.transpose() } else { op_a_dense }; Op::NoOp(a) => DMatrix::from(&a),
Op::Transpose(a) => DMatrix::from(&a).transpose(),
};
c_dense = beta * c_dense + alpha * &op_a_dense; c_dense = beta * c_dense + alpha * &op_a_dense;
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
@ -343,19 +363,23 @@ proptest! {
} }
#[test] #[test]
fn spmm_csr_test(SpmmCsrArgs { c, beta, alpha, trans_a, a, trans_b, b } fn spmm_csr_test(SpmmCsrArgs { c, beta, alpha, a, b }
in spmm_csr_args_strategy() in spmm_csr_args_strategy()
) { ) {
// Test that we get the expected result by comparing to an equivalent dense operation // Test that we get the expected result by comparing to an equivalent dense operation
// (here we give in the C matrix, so the sparsity pattern is essentially fixed) // (here we give in the C matrix, so the sparsity pattern is essentially fixed)
let mut c_sparse = c.clone(); let mut c_sparse = c.clone();
spmm_csr(&mut c_sparse, beta, alpha, trans_a, &a, trans_b, &b).unwrap(); spmm_csr(&mut c_sparse, beta, alpha, a.as_ref(), b.as_ref()).unwrap();
let mut c_dense = DMatrix::from(&c); let mut c_dense = DMatrix::from(&c);
let op_a_dense = DMatrix::from(&a); let op_a_dense = match a {
let op_a_dense = if trans_a.to_bool() { op_a_dense.transpose() } else { op_a_dense }; Op::NoOp(ref a) => DMatrix::from(a),
let op_b_dense = DMatrix::from(&b); Op::Transpose(ref a) => DMatrix::from(a).transpose(),
let op_b_dense = if trans_b.to_bool() { op_b_dense.transpose() } else { op_b_dense }; };
let op_b_dense = match b {
Op::NoOp(ref b) => DMatrix::from(b),
Op::Transpose(ref b) => DMatrix::from(b).transpose(),
};
c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense; c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense;
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense); prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
@ -363,22 +387,32 @@ proptest! {
#[test] #[test]
fn spmm_csr_panics_on_dim_mismatch( fn spmm_csr_panics_on_dim_mismatch(
(alpha, beta, c, a, b, trans_a, trans_b) (alpha, beta, c, a, b)
in (PROPTEST_I32_VALUE_STRATEGY, in (PROPTEST_I32_VALUE_STRATEGY,
PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY,
csr_strategy(), csr_strategy(),
csr_strategy(), op_strategy(csr_strategy()),
csr_strategy(), op_strategy(csr_strategy()))
trans_strategy(),
trans_strategy())
) { ) {
// We refer to `A * B` as the "product" // We refer to `A * B` as the "product"
let product_rows = if trans_a.to_bool() { a.ncols() } else { a.nrows() }; let product_rows = match &a {
let product_cols = if trans_b.to_bool() { b.nrows() } else { b.ncols() }; Op::NoOp(ref a) => a.nrows(),
Op::Transpose(ref a) => a.ncols(),
};
let product_cols = match &b {
Op::NoOp(ref b) => b.ncols(),
Op::Transpose(ref b) => b.nrows(),
};
// Determine the common dimension in the product // Determine the common dimension in the product
// from the perspective of a and b, respectively // from the perspective of a and b, respectively
let product_a_common = if trans_a.to_bool() { a.nrows() } else { a.ncols() }; let product_a_common = match &a {
let product_b_common = if trans_b.to_bool() { b.ncols() } else { b.nrows() }; Op::NoOp(ref a) => a.ncols(),
Op::Transpose(ref a) => a.nrows(),
};
let product_b_common = match &b {
Op::NoOp(ref b) => b.nrows(),
Op::Transpose(ref b) => b.ncols(),
};
let dims_are_compatible = product_rows == c.nrows() let dims_are_compatible = product_rows == c.nrows()
&& product_cols == c.ncols() && product_cols == c.ncols()
@ -390,7 +424,7 @@ proptest! {
let result = catch_unwind(|| { let result = catch_unwind(|| {
let mut spmm_result = c.clone(); let mut spmm_result = c.clone();
spmm_csr(&mut spmm_result, beta, alpha, trans_a, &a, trans_b, &b).unwrap(); spmm_csr(&mut spmm_result, beta, alpha, a.as_ref(), b.as_ref()).unwrap();
}); });
prop_assert!(result.is_err(), prop_assert!(result.is_err(),
@ -399,15 +433,20 @@ proptest! {
#[test] #[test]
fn spadd_csr_panics_on_dim_mismatch( fn spadd_csr_panics_on_dim_mismatch(
(alpha, beta, c, a, trans_a) (alpha, beta, c, op_a)
in (PROPTEST_I32_VALUE_STRATEGY, in (PROPTEST_I32_VALUE_STRATEGY,
PROPTEST_I32_VALUE_STRATEGY, PROPTEST_I32_VALUE_STRATEGY,
csr_strategy(), csr_strategy(),
csr_strategy(), op_strategy(csr_strategy()))
trans_strategy())
) { ) {
let op_a_rows = if trans_a.to_bool() { a.ncols() } else { a.nrows() }; let op_a_rows = match &op_a {
let op_a_cols = if trans_a.to_bool() { a.nrows() } else { a.ncols() }; &Op::NoOp(ref a) => a.nrows(),
&Op::Transpose(ref a) => a.ncols()
};
let op_a_cols = match &op_a {
&Op::NoOp(ref a) => a.ncols(),
&Op::Transpose(ref a) => a.nrows()
};
let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols; let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols;
@ -417,7 +456,7 @@ proptest! {
let result = catch_unwind(|| { let result = catch_unwind(|| {
let mut spmm_result = c.clone(); let mut spmm_result = c.clone();
spadd_csr(&mut spmm_result, beta, alpha, trans_a, &a).unwrap(); spadd_csr(&mut spmm_result, beta, alpha, op_a.as_ref()).unwrap();
}); });
prop_assert!(result.is_err(), prop_assert!(result.is_err(),