fixes compiling on alpha 1.0

This commit is contained in:
arturo 2015-01-09 21:55:15 +01:00
parent c708632036
commit fc1fd16e20
8 changed files with 168 additions and 178 deletions

View File

@ -6,7 +6,7 @@ macro_rules! assert_approx_eq_eps(
let eps = &($eps);
let (given_val, expected_val) = (&($given), &($expected));
if !ApproxEq::approx_eq_eps(given_val, expected_val, eps) {
panic!("assertion failed: `left ≈ right` (left: `{}`, right: `{}`, tolerance: `{}`)",
panic!("assertion failed: `left ≈ right` (left: `{:?}`, right: `{:?}`, tolerance: `{:?}`)",
*given_val, *expected_val, *eps
)
}
@ -21,7 +21,7 @@ macro_rules! assert_approx_eq_ulps(
let ulps = $ulps;
let (given_val, expected_val) = (&($given), &($expected));
if !ApproxEq::approx_eq_ulps(given_val, expected_val, ulps) {
panic!("assertion failed: `left ≈ right` (left: `{}`, right: `{}`, tolerance: `{}`)",
panic!("assertion failed: `left ≈ right` (left: `{:?}`, right: `{:?}`, tolerance: `{:?}`)",
*given_val, *expected_val, ulps
)
}
@ -34,7 +34,7 @@ macro_rules! assert_approx_eq(
($given: expr, $expected: expr) => ({
let (given_val, expected_val) = (&($given), &($expected));
if !ApproxEq::approx_eq(given_val, expected_val) {
panic!("assertion failed: `left ≈ right` (left: `{}`, right: `{}`, tolerance: `{}`)",
panic!("assertion failed: `left ≈ right` (left: `{:?}`, right: `{:?}`, tolerance: `{:?}`)",
*given_val, *expected_val,
ApproxEq::approx_epsilon(Some(*given_val))
)

View File

@ -12,7 +12,7 @@ use std::mem;
use structs::dvec::DVec;
use traits::operations::{Inv, Transpose, Mean, Cov};
use traits::structure::{Cast, ColSlice, RowSlice, Diag, Eye, Indexable, Shape, Zero, One, BaseNum};
use std::fmt::{Show, Formatter, Result};
use std::fmt::{Show, Formatter, Result, String};
/// Matrix with dimensions unknown at compile-time.
@ -633,7 +633,7 @@ impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
}
}
impl<N: Show + Copy> Show for DMat<N> {
impl<N: Show + Copy + String> Show for DMat<N> {
fn fmt(&self, form:&mut Formatter) -> Result {
for i in range(0u, self.nrows()) {
for j in range(0u, self.ncols()) {

View File

@ -395,7 +395,7 @@ macro_rules! dvec_impl(
);
macro_rules! small_dvec_impl (
($dvec: ident, $dim: expr $(,$idx: expr)*) => (
($dvec: ident, $dim: expr, $($idx: expr),*) => (
impl<N> $dvec<N> {
#[inline]
pub fn len(&self) -> uint {
@ -436,7 +436,7 @@ macro_rules! small_dvec_impl (
);
macro_rules! small_dvec_from_impl (
($dvec: ident, $dim: expr $(,$zeros: expr)*) => (
($dvec: ident, $dim: expr, $($zeros: expr),*) => (
impl<N: Copy + Zero> $dvec<N> {
/// Builds a vector filled with a constant.
#[inline]

View File

@ -1,13 +1,12 @@
#![macro_use]
macro_rules! mat_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N> $t<N> {
#[inline]
pub fn new($comp0: N $(, $compN: N )*) -> $t<N> {
pub fn new($($compN: N ),+) -> $t<N> {
$t {
$comp0: $comp0
$(, $compN: $compN )*
$($compN: $compN ),+
}
}
}
@ -76,76 +75,76 @@ macro_rules! at_fast_impl(
);
macro_rules! mat_cast_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<$t<Nin>> for $t<Nout> {
#[inline]
fn from(v: $t<Nin>) -> $t<Nout> {
$t::new(Cast::from(v.$comp0) $(, Cast::from(v.$compN))*)
$t::new($(Cast::from(v.$compN)),+)
}
}
)
);
macro_rules! add_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Add<N, Output = N>> Add<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn add(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 + right.$comp0 $(, self.$compN + right.$compN)*)
$t::new($(self.$compN + right.$compN),+)
}
}
)
);
macro_rules! sub_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Sub<N, Output = N>> Sub<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn sub(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 - right.$comp0 $(, self.$compN - right.$compN)*)
$t::new($(self.$compN - right.$compN),+)
}
}
)
);
macro_rules! mat_mul_scalar_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Mul<N, Output = N>> Mul<N> for N {
type Output = $t<N>;
#[inline]
fn mul(self, right: N) -> $t<N> {
$t::new(self.$comp0 * *right $(, self.$compN * *right)*)
$t::new($(self.$compN * *right),+)
}
}
)
);
macro_rules! mat_div_scalar_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Div<N, Output = N>> Div<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn div(self, right: N) -> $t<N> {
$t::new(self.$comp0 / *right $(, self.$compN / *right)*)
$t::new($(self.$compN / *right),+)
}
}
)
);
macro_rules! mat_add_scalar_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Add<N, Output = N>> Add<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn add(self, right: N) -> $t<N> {
$t::new(self.$comp0 + *right $(, self.$compN + *right)*)
$t::new($(self.$compN + *right),+)
}
}
)
@ -166,24 +165,24 @@ macro_rules! eye_impl(
);
macro_rules! mat_sub_scalar_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Sub<N, Output = N> Sub<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn sub(self, right: &N) -> $t<N> {
$t::new(self.$comp0 - *right $(, self.$compN - *right)*)
$t::new($(self.$compN - *right),+)
}
}
)
);
macro_rules! absolute_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Absolute<N>> Absolute<$t<N>> for $t<N> {
#[inline]
fn abs(m: &$t<N>) -> $t<N> {
$t::new(::abs(&m.$comp0) $(, ::abs(&m.$compN) )*)
$t::new($(::abs(&m.$compN) ),+)
}
}
)
@ -216,30 +215,29 @@ macro_rules! iterable_mut_impl(
);
macro_rules! one_impl(
($t: ident, $value0: expr $(, $valueN: expr)* ) => (
($t: ident, $($valueN: expr),+ ) => (
impl<N: Copy + BaseNum> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t::new($value0() $(, $valueN() )*)
$t::new($($valueN() ),+)
}
}
)
);
macro_rules! zero_impl(
($t: ident, $comp0: ident $(, $compN: ident)* ) => (
($t: ident, $($compN: ident),+ ) => (
impl<N: Zero> Zero for $t<N> {
#[inline]
fn zero() -> $t<N> {
$t {
$comp0: ::zero()
$(, $compN: ::zero() )*
$($compN: ::zero() ),+
}
}
#[inline]
fn is_zero(&self) -> bool {
::is_zero(&self.$comp0) $(&& ::is_zero(&self.$compN) )*
$(::is_zero(&self.$compN) )&&+
}
}
)

View File

@ -1,19 +1,18 @@
#![macro_use]
macro_rules! orig_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Zero> Orig for $t<N> {
#[inline]
fn orig() -> $t<N> {
$t {
$comp0: ::zero()
$(, $compN: ::zero() )*
$($compN: ::zero() ),+
}
}
#[inline]
fn is_orig(&self) -> bool {
self.$comp0.is_zero() $(&& self.$compN.is_zero() )*
$(self.$compN.is_zero() )&&+
}
}
)
@ -33,40 +32,39 @@ macro_rules! pnt_sub_impl(
);
macro_rules! pnt_add_vec_impl(
($t: ident, $tv: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $tv: ident, $($compN: ident),+) => (
impl<N: Copy + Add<N, Output = N>> Add<$tv<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn add(self, right: $tv<N>) -> $t<N> {
$t::new(self.$comp0 + right.$comp0 $(, self.$compN + right.$compN)*)
$t::new($(self.$compN + right.$compN),+)
}
}
)
);
macro_rules! pnt_sub_vec_impl(
($t: ident, $tv: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $tv: ident, $($compN: ident),+) => (
impl<N: Copy + Sub<N, Output = N>> Sub<$tv<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn sub(self, right: $tv<N>) -> $t<N> {
$t::new(self.$comp0 - right.$comp0 $(, self.$compN - right.$compN)*)
$t::new($(self.$compN - right.$compN),+)
}
}
)
);
macro_rules! pnt_as_vec_impl(
($t: ident, $tv: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $tv: ident, $($compN: ident),+) => (
impl<N> $t<N> {
/// Converts this point to its associated vector.
#[inline]
pub fn to_vec(self) -> $tv<N> {
$tv::new(
self.$comp0
$(, self.$compN)*
$(self.$compN),+
)
}
@ -80,8 +78,7 @@ macro_rules! pnt_as_vec_impl(
#[inline]
fn set_coords(&mut self, v: $tv<N>) {
self.$comp0 = v.$comp0;
$(self.$compN = v.$compN;)*
$(self.$compN = v.$compN;)+
}
}
@ -105,13 +102,12 @@ macro_rules! pnt_as_vec_impl(
);
macro_rules! pnt_to_homogeneous_impl(
($t: ident, $t2: ident, $extra: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
impl<N: Copy + One + Zero> ToHomogeneous<$t2<N>> for $t<N> {
fn to_homogeneous(&self) -> $t2<N> {
let mut res: $t2<N> = Orig::orig();
res.$comp0 = self.$comp0;
$( res.$compN = self.$compN; )*
$( res.$compN = self.$compN; )+
res.$extra = ::one();
res
@ -121,13 +117,12 @@ macro_rules! pnt_to_homogeneous_impl(
);
macro_rules! pnt_from_homogeneous_impl(
($t: ident, $t2: ident, $extra: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
impl<N: Copy + Div<N, Output = N> + One + Zero> FromHomogeneous<$t2<N>> for $t<N> {
fn from(v: &$t2<N>) -> $t<N> {
let mut res: $t<N> = Orig::orig();
res.$comp0 = v.$comp0 / v.$extra;
$( res.$compN = v.$compN / v.$extra; )*
$( res.$compN = v.$compN / v.$extra; )+
res
}

View File

@ -1,18 +1,17 @@
#![macro_use]
macro_rules! new_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N> $t<N> {
/// Creates a new vector.
#[inline]
pub fn new($comp0: N $( , $compN: N )*) -> $t<N> {
pub fn new($($compN: N ),+) -> $t<N> {
$t {
$comp0: $comp0
$(, $compN: $compN )*
$($compN: $compN ),+
}
}
}
)
);
);
macro_rules! as_array_impl(
@ -79,91 +78,82 @@ macro_rules! at_fast_impl(
// FIXME: N should be bounded by Ord instead of BaseFloat…
// However, f32/f64 does not implement Ord…
macro_rules! ord_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: BaseFloat + Copy> POrd for $t<N> {
#[inline]
fn inf(&self, other: &$t<N>) -> $t<N> {
$t::new(self.$comp0.min(other.$comp0)
$(, self.$compN.min(other.$compN))*)
$t::new($(self.$compN.min(other.$compN)),+)
}
#[inline]
fn sup(&self, other: &$t<N>) -> $t<N> {
$t::new(self.$comp0.max(other.$comp0)
$(, self.$compN.max(other.$compN))*)
$t::new($(self.$compN.max(other.$compN)),+)
}
#[inline]
#[allow(unused_mut)] // otherwise there will be a warning for is_eq or Vec1.
fn partial_cmp(&self, other: &$t<N>) -> POrdering {
let is_lt = self.$comp0 < other.$comp0;
let mut is_eq = self.$comp0 == other.$comp0;
if is_lt { // <
$(
if self.$compN > other.$compN {
return POrdering::NotComparable
}
)*
POrdering::PartialLess
}
else { // >=
$(
if self.$compN < other.$compN {
return POrdering::NotComparable
}
else if self.$compN > other.$compN {
is_eq = false;
}
)*
if is_eq {
POrdering::PartialEqual
}
else {
POrdering::PartialGreater
}
}
fn partial_cmp(&self, other: &$t<N>) -> POrdering {
let mut first = true;
let mut is_lt = false;
let mut is_eq = false;
$(
if first {
is_lt = self.$compN < other.$compN;
is_eq = self.$compN == other.$compN;
first = false;
}
else if is_lt { // <
if self.$compN > other.$compN {
return POrdering::NotComparable
}
}
else { // >=
if self.$compN < other.$compN {
return POrdering::NotComparable
}
else if self.$compN > other.$compN {
is_eq = false;
}
}
)+
if is_lt {
POrdering::PartialLess
}
else if is_eq {
POrdering::PartialEqual
}
else {
POrdering::PartialGreater
}
}
#[inline]
fn partial_lt(&self, other: &$t<N>) -> bool {
self.$comp0 < other.$comp0 $(&& self.$compN < other.$compN)*
$(self.$compN < other.$compN)&&+
}
#[inline]
fn partial_le(&self, other: &$t<N>) -> bool {
self.$comp0 <= other.$comp0 $(&& self.$compN <= other.$compN)*
$(self.$compN <= other.$compN)&&+
}
#[inline]
fn partial_gt(&self, other: &$t<N>) -> bool {
self.$comp0 > other.$comp0 $(&& self.$compN > other.$compN)*
$(self.$compN > other.$compN)&&+
}
#[inline]
fn partial_ge(&self, other: &$t<N>) -> bool {
self.$comp0 >= other.$comp0 $(&& self.$compN >= other.$compN)*
$(self.$compN >= other.$compN)&&+
}
}
)
);
macro_rules! vec_axis_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Zero + One> $t<N> {
/// Create a unit vector with its `$comp0` component equal to 1.0.
#[inline]
pub fn $comp0() -> $t<N> {
let mut res: $t<N> = ::zero();
res.$comp0 = ::one();
res
}
$(
/// Create a unit vector with its `$compN` component equal to 1.0.
#[inline]
@ -174,17 +164,17 @@ macro_rules! vec_axis_impl(
res
}
)*
)+
}
)
);
macro_rules! vec_cast_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<$t<Nin>> for $t<Nout> {
#[inline]
fn from(v: $t<Nin>) -> $t<Nout> {
$t::new(Cast::from(v.$comp0) $(, Cast::from(v.$compN))*)
$t::new($(Cast::from(v.$compN)),+)
}
}
)
@ -255,14 +245,13 @@ macro_rules! index_impl(
);
macro_rules! new_repeat_impl(
($t: ident, $param: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $param: ident, $($compN: ident),+) => (
impl<N: Copy> $t<N> {
/// Creates a new vector with all its components equal to a given value.
#[inline]
pub fn new_repeat($param: N) -> $t<N> {
$t{
$comp0: $param
$(, $compN: $param )*
$($compN: $param ),+
}
}
}
@ -382,172 +371,183 @@ macro_rules! basis_impl(
);
macro_rules! axpy_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Axpy<N>> Axpy<N> for $t<N> {
#[inline]
fn axpy(&mut self, a: &N, x: &$t<N>) {
self.$comp0.axpy(a, &x.$comp0);
$( self.$compN.axpy(a, &x.$compN); )*
$( self.$compN.axpy(a, &x.$compN); )+
}
}
)
);
macro_rules! add_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Add<N, Output = N>> Add<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn add(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 + right.$comp0 $(, self.$compN + right.$compN)*)
$t::new($(self.$compN + right.$compN),+)
}
}
)
);
macro_rules! scalar_add_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
// $t against scalar
impl<N: Copy + Add<N, Output = N>> Add<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn add(self, right: N) -> $t<N> {
$t::new(self.$comp0 + right $(, self.$compN + right)*)
$t::new($(self.$compN + right),+)
}
}
)
);
macro_rules! sub_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Sub<N, Output = N>> Sub<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn sub(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 - right.$comp0 $(, self.$compN - right.$compN)*)
$t::new($(self.$compN - right.$compN),+)
}
}
)
);
macro_rules! scalar_sub_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Sub<N, Output = N>> Sub<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn sub(self, right: N) -> $t<N> {
$t::new(self.$comp0 - right $(, self.$compN - right)*)
$t::new($(self.$compN - right),+)
}
}
)
);
macro_rules! mul_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Mul<N, Output = N>> Mul<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn mul(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 * right.$comp0 $(, self.$compN * right.$compN)*)
$t::new($(self.$compN * right.$compN),+)
}
}
)
);
macro_rules! scalar_mul_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Mul<N, Output = N>> Mul<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn mul(self, right: N) -> $t<N> {
$t::new(self.$comp0 * right $(, self.$compN * right)*)
$t::new($(self.$compN * right),+)
}
}
)
);
macro_rules! div_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Div<N, Output = N>> Div<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn div(self, right: $t<N>) -> $t<N> {
$t::new(self.$comp0 / right.$comp0 $(, self.$compN / right.$compN)*)
$t::new($(self.$compN / right.$compN),+)
}
}
)
);
macro_rules! scalar_div_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Div<N, Output = N>> Div<N> for $t<N> {
type Output = $t<N>;
#[inline]
fn div(self, right: N) -> $t<N> {
$t::new(self.$comp0 / right $(, self.$compN / right)*)
$t::new($(self.$compN / right),+)
}
}
)
);
macro_rules! neg_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Neg<Output = N> + Copy> Neg for $t<N> {
type Output = $t<N>;
#[inline]
fn neg(self) -> $t<N> {
$t::new(-self.$comp0 $(, -self.$compN )*)
$t::new($(-self.$compN ),+)
}
}
)
);
macro_rules! add (
// base case
($x:expr) => {
$x
};
// `$x` followed by at least one `$y,`
($x:expr, $($y:expr),+) => {
// call min! on the tail `$y`
Add::add($x, add!($($y),+))
}
);
macro_rules! dot_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: BaseNum> Dot<N> for $t<N> {
#[inline]
fn dot(&self, other: &$t<N>) -> N {
self.$comp0 * other.$comp0 $(+ self.$compN * other.$compN )*
add!($(self.$compN * other.$compN ),+)
}
}
)
);
macro_rules! scalar_ops_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + Mul<N, Output = N>> ScalarMul<N> for $t<N> {
#[inline]
fn mul_s(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 * *other $(, self.$compN * *other)*)
$t::new($(self.$compN * *other),+)
}
}
impl<N: Copy + Div<N, Output = N>> ScalarDiv<N> for $t<N> {
#[inline]
fn div_s(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 / *other $(, self.$compN / *other)*)
$t::new($(self.$compN / *other),+)
}
}
impl<N: Copy + Add<N, Output = N>> ScalarAdd<N> for $t<N> {
#[inline]
fn add_s(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 + *other $(, self.$compN + *other)*)
$t::new($(self.$compN + *other),+)
}
}
impl<N: Copy + Sub<N, Output = N>> ScalarSub<N> for $t<N> {
#[inline]
fn sub_s(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 - *other $(, self.$compN - *other)*)
$t::new($(self.$compN - *other),+)
}
}
)
@ -595,7 +595,7 @@ macro_rules! translation_impl(
);
macro_rules! norm_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Copy + BaseFloat> Norm<N> for $t<N> {
#[inline]
fn sqnorm(&self) -> N {
@ -613,7 +613,6 @@ macro_rules! norm_impl(
fn normalize(&mut self) -> N {
let l = Norm::norm(self);
self.$comp0 = self.$comp0 / l;
$(self.$compN = self.$compN / l;)*
l
@ -623,7 +622,7 @@ macro_rules! norm_impl(
);
macro_rules! approx_eq_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
#[inline]
fn approx_epsilon(_: Option<$t<N>>) -> N {
@ -637,33 +636,29 @@ macro_rules! approx_eq_impl(
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool {
ApproxEq::approx_eq(&self.$comp0, &other.$comp0)
$(&& ApproxEq::approx_eq(&self.$compN, &other.$compN))*
$(ApproxEq::approx_eq(&self.$compN, &other.$compN))&&+
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, eps: &N) -> bool {
ApproxEq::approx_eq_eps(&self.$comp0, &other.$comp0, eps)
$(&& ApproxEq::approx_eq_eps(&self.$compN, &other.$compN, eps))*
$(ApproxEq::approx_eq_eps(&self.$compN, &other.$compN, eps))&&+
}
#[inline]
fn approx_eq_ulps(&self, other: &$t<N>, ulps: u32) -> bool {
ApproxEq::approx_eq_ulps(&self.$comp0, &other.$comp0, ulps)
$(&& ApproxEq::approx_eq_ulps(&self.$compN, &other.$compN, ulps))*
$(ApproxEq::approx_eq_ulps(&self.$compN, &other.$compN, ulps))&&+
}
}
)
);
macro_rules! zero_one_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: One> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t {
$comp0: ::one()
$(, $compN: ::one() )*
$($compN: ::one() ),+
}
}
}
@ -672,47 +667,52 @@ macro_rules! zero_one_impl(
#[inline]
fn zero() -> $t<N> {
$t {
$comp0: ::zero()
$(, $compN: ::zero() )*
$($compN: ::zero() ),+
}
}
#[inline]
fn is_zero(&self) -> bool {
self.$comp0.is_zero()
$(&& self.$compN.is_zero() )*
$(self.$compN.is_zero() )&&+
}
}
)
);
macro_rules! from_iterator_impl(
($t: ident, $param0: ident $(, $paramN: ident)*) => (
($t: ident, $param0: ident) => (
impl<N> FromIterator<N> for $t<N> {
#[inline]
fn from_iter<I: Iterator<Item = N>>(mut $param0: I) -> $t<N> {
$t::new($param0.next().unwrap() $(, $paramN.next().unwrap())*)
$t::new($param0.next().unwrap())
}
}
);
($t: ident, $param0: ident, $($paramN: ident),+) => (
impl<N> FromIterator<N> for $t<N> {
#[inline]
fn from_iter<I: Iterator<Item = N>>(mut $param0: I) -> $t<N> {
$t::new($param0.next().unwrap(),
$($paramN.next().unwrap()),+)
}
}
)
);
macro_rules! bounded_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Bounded> Bounded for $t<N> {
#[inline]
fn max_value() -> $t<N> {
$t {
$comp0: Bounded::max_value()
$(, $compN: Bounded::max_value() )*
$($compN: Bounded::max_value() ),+
}
}
#[inline]
fn min_value() -> $t<N> {
$t {
$comp0: Bounded::min_value()
$(, $compN: Bounded::min_value() )*
$($compN: Bounded::min_value() ),+
}
}
}
@ -720,13 +720,12 @@ macro_rules! bounded_impl(
);
macro_rules! vec_to_homogeneous_impl(
($t: ident, $t2: ident, $extra: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
impl<N: Copy + One + Zero> ToHomogeneous<$t2<N>> for $t<N> {
fn to_homogeneous(&self) -> $t2<N> {
let mut res: $t2<N> = ::zero();
res.$comp0 = self.$comp0;
$( res.$compN = self.$compN; )*
$( res.$compN = self.$compN; )+
res
}
@ -735,13 +734,12 @@ macro_rules! vec_to_homogeneous_impl(
);
macro_rules! vec_from_homogeneous_impl(
($t: ident, $t2: ident, $extra: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
impl<N: Copy + Div<N, Output = N> + One + Zero> FromHomogeneous<$t2<N>> for $t<N> {
fn from(v: &$t2<N>) -> $t<N> {
let mut res: $t<N> = ::zero();
res.$comp0 = v.$comp0;
$( res.$compN = v.$compN; )*
$( res.$compN = v.$compN; )+
res
}
@ -792,14 +790,13 @@ macro_rules! transform_impl(
);
macro_rules! vec_as_pnt_impl(
($tv: ident, $t: ident, $comp0: ident $(,$compN: ident)*) => (
($tv: ident, $t: ident, $($compN: ident),+) => (
impl<N> $tv<N> {
#[deprecated = "use `na::orig() + this_vector` instead."]
#[inline]
pub fn to_pnt(self) -> $t<N> {
$t::new(
self.$comp0
$(, self.$compN)*
$(self.$compN),+
)
}
@ -839,11 +836,11 @@ macro_rules! num_float_vec_impl(
);
macro_rules! absolute_vec_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
($t: ident, $($compN: ident),+) => (
impl<N: Absolute<N>> Absolute<$t<N>> for $t<N> {
#[inline]
fn abs(m: &$t<N>) -> $t<N> {
$t::new(::abs(&m.$comp0) $(, ::abs(&m.$compN) )*)
$t::new($(::abs(&m.$compN) ),+)
}
}
)

View File

@ -242,7 +242,7 @@ fn test_dmat_from_vec() {
]
);
println!("mat1: {}, mat2: {}", mat1, mat2);
println!("mat1: {:?}, mat2: {:?}", mat1, mat2);
assert!(mat1 == mat2);
}

View File

@ -52,7 +52,7 @@ fn test_quat_to_axis_angle() {
let q = UnitQuat::new(axis_angle);
println!("{} {}", q.rotation(), axis_angle);
println!("{:?} {:?}", q.rotation(), axis_angle);
assert!(na::approx_eq(&q.rotation(), &axis_angle))
}
}