Add matrix exponential for complex matrices (#744)
Added matrix exponential for complex matrices.
This commit is contained in:
parent
bc70258e5c
commit
f9f7169558
@ -10,10 +10,12 @@ use crate::{
|
||||
convert, try_convert, ComplexField, MatrixN, RealField,
|
||||
};
|
||||
|
||||
use crate::num::Zero;
|
||||
|
||||
// https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py
|
||||
struct ExpmPadeHelper<N, D>
|
||||
where
|
||||
N: RealField,
|
||||
N: ComplexField,
|
||||
D: DimMin<D>,
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
|
||||
{
|
||||
@ -27,20 +29,20 @@ where
|
||||
a8: Option<MatrixN<N, D>>,
|
||||
a10: Option<MatrixN<N, D>>,
|
||||
|
||||
d4_exact: Option<N>,
|
||||
d6_exact: Option<N>,
|
||||
d8_exact: Option<N>,
|
||||
d10_exact: Option<N>,
|
||||
d4_exact: Option<N::RealField>,
|
||||
d6_exact: Option<N::RealField>,
|
||||
d8_exact: Option<N::RealField>,
|
||||
d10_exact: Option<N::RealField>,
|
||||
|
||||
d4_approx: Option<N>,
|
||||
d6_approx: Option<N>,
|
||||
d8_approx: Option<N>,
|
||||
d10_approx: Option<N>,
|
||||
d4_approx: Option<N::RealField>,
|
||||
d6_approx: Option<N::RealField>,
|
||||
d8_approx: Option<N::RealField>,
|
||||
d10_approx: Option<N::RealField>,
|
||||
}
|
||||
|
||||
impl<N, D> ExpmPadeHelper<N, D>
|
||||
where
|
||||
N: RealField,
|
||||
N: ComplexField,
|
||||
D: DimMin<D>,
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
|
||||
{
|
||||
@ -110,7 +112,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
fn d4_tight(&mut self) -> N {
|
||||
fn d4_tight(&mut self) -> N::RealField {
|
||||
if self.d4_exact.is_none() {
|
||||
self.calc_a4();
|
||||
self.d4_exact = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
|
||||
@ -118,7 +120,7 @@ where
|
||||
self.d4_exact.unwrap()
|
||||
}
|
||||
|
||||
fn d6_tight(&mut self) -> N {
|
||||
fn d6_tight(&mut self) -> N::RealField {
|
||||
if self.d6_exact.is_none() {
|
||||
self.calc_a6();
|
||||
self.d6_exact = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
|
||||
@ -126,7 +128,7 @@ where
|
||||
self.d6_exact.unwrap()
|
||||
}
|
||||
|
||||
fn d8_tight(&mut self) -> N {
|
||||
fn d8_tight(&mut self) -> N::RealField {
|
||||
if self.d8_exact.is_none() {
|
||||
self.calc_a8();
|
||||
self.d8_exact = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
|
||||
@ -134,7 +136,7 @@ where
|
||||
self.d8_exact.unwrap()
|
||||
}
|
||||
|
||||
fn d10_tight(&mut self) -> N {
|
||||
fn d10_tight(&mut self) -> N::RealField {
|
||||
if self.d10_exact.is_none() {
|
||||
self.calc_a10();
|
||||
self.d10_exact = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
|
||||
@ -142,7 +144,7 @@ where
|
||||
self.d10_exact.unwrap()
|
||||
}
|
||||
|
||||
fn d4_loose(&mut self) -> N {
|
||||
fn d4_loose(&mut self) -> N::RealField {
|
||||
if self.use_exact_norm {
|
||||
return self.d4_tight();
|
||||
}
|
||||
@ -159,7 +161,7 @@ where
|
||||
self.d4_approx.unwrap()
|
||||
}
|
||||
|
||||
fn d6_loose(&mut self) -> N {
|
||||
fn d6_loose(&mut self) -> N::RealField {
|
||||
if self.use_exact_norm {
|
||||
return self.d6_tight();
|
||||
}
|
||||
@ -176,7 +178,7 @@ where
|
||||
self.d6_approx.unwrap()
|
||||
}
|
||||
|
||||
fn d8_loose(&mut self) -> N {
|
||||
fn d8_loose(&mut self) -> N::RealField {
|
||||
if self.use_exact_norm {
|
||||
return self.d8_tight();
|
||||
}
|
||||
@ -193,7 +195,7 @@ where
|
||||
self.d8_approx.unwrap()
|
||||
}
|
||||
|
||||
fn d10_loose(&mut self) -> N {
|
||||
fn d10_loose(&mut self) -> N::RealField {
|
||||
if self.use_exact_norm {
|
||||
return self.d10_tight();
|
||||
}
|
||||
@ -359,15 +361,20 @@ where
|
||||
|
||||
fn ell<N, D>(a: &MatrixN<N, D>, m: u64) -> u64
|
||||
where
|
||||
N: RealField,
|
||||
N: ComplexField,
|
||||
D: Dim,
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, D>
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, D, D>,
|
||||
{
|
||||
// 2m choose m = (2m)!/(m! * (2m-m)!)
|
||||
|
||||
let a_abs_onenorm = onenorm_matrix_power_nonm(&a.abs(), 2 * m + 1);
|
||||
let a_abs = a.map(|x| x.abs());
|
||||
|
||||
if a_abs_onenorm == N::zero() {
|
||||
let a_abs_onenorm = onenorm_matrix_power_nonm(&a_abs, 2 * m + 1);
|
||||
|
||||
if a_abs_onenorm == <N as ComplexField>::RealField::zero() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -399,27 +406,33 @@ where
|
||||
q.lu().solve(&p).unwrap()
|
||||
}
|
||||
|
||||
fn one_norm<N, D>(m: &MatrixN<N, D>) -> N
|
||||
fn one_norm<N, D>(m: &MatrixN<N, D>) -> N::RealField
|
||||
where
|
||||
N: RealField,
|
||||
N: ComplexField,
|
||||
D: Dim,
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
let mut max = N::zero();
|
||||
let mut max = <N as ComplexField>::RealField::zero();
|
||||
|
||||
for i in 0..m.ncols() {
|
||||
let col = m.column(i);
|
||||
max = max.max(col.iter().fold(N::zero(), |a, b| a + b.abs()));
|
||||
max = max.max(
|
||||
col.iter()
|
||||
.fold(<N as ComplexField>::RealField::zero(), |a, b| a + b.abs()),
|
||||
);
|
||||
}
|
||||
|
||||
max
|
||||
}
|
||||
|
||||
impl<N: RealField, D> MatrixN<N, D>
|
||||
impl<N: ComplexField, D> MatrixN<N, D>
|
||||
where
|
||||
D: DimMin<D, Output = D>,
|
||||
DefaultAllocator:
|
||||
Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>> + Allocator<N, D>,
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<(usize, usize), DimMinimum<D, D>>
|
||||
+ Allocator<N, D>
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, D, D>,
|
||||
{
|
||||
/// Computes exponential of this matrix
|
||||
pub fn exp(&self) -> Self {
|
||||
@ -430,19 +443,19 @@ where
|
||||
|
||||
let mut h = ExpmPadeHelper::new(self.clone(), true);
|
||||
|
||||
let eta_1 = N::max(h.d4_loose(), h.d6_loose());
|
||||
let eta_1 = N::RealField::max(h.d4_loose(), h.d6_loose());
|
||||
if eta_1 < convert(1.495585217958292e-002) && ell(&h.a, 3) == 0 {
|
||||
let (u, v) = h.pade3();
|
||||
return solve_p_q(u, v);
|
||||
}
|
||||
|
||||
let eta_2 = N::max(h.d4_tight(), h.d6_loose());
|
||||
let eta_2 = N::RealField::max(h.d4_tight(), h.d6_loose());
|
||||
if eta_2 < convert(2.539398330063230e-001) && ell(&h.a, 5) == 0 {
|
||||
let (u, v) = h.pade5();
|
||||
return solve_p_q(u, v);
|
||||
}
|
||||
|
||||
let eta_3 = N::max(h.d6_tight(), h.d8_loose());
|
||||
let eta_3 = N::RealField::max(h.d6_tight(), h.d8_loose());
|
||||
if eta_3 < convert(9.504178996162932e-001) && ell(&h.a, 7) == 0 {
|
||||
let (u, v) = h.pade7();
|
||||
return solve_p_q(u, v);
|
||||
@ -452,11 +465,11 @@ where
|
||||
return solve_p_q(u, v);
|
||||
}
|
||||
|
||||
let eta_4 = N::max(h.d8_loose(), h.d10_loose());
|
||||
let eta_5 = N::min(eta_3, eta_4);
|
||||
let eta_4 = N::RealField::max(h.d8_loose(), h.d10_loose());
|
||||
let eta_5 = N::RealField::min(eta_3, eta_4);
|
||||
let theta_13 = convert(4.25);
|
||||
|
||||
let mut s = if eta_5 == N::zero() {
|
||||
let mut s = if eta_5 == N::RealField::zero() {
|
||||
0
|
||||
} else {
|
||||
let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap();
|
||||
|
@ -126,4 +126,51 @@ mod tests {
|
||||
|
||||
assert!(relative_eq!(f, m.exp(), epsilon = 1.0e-7));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn exp_complex() {
|
||||
use nalgebra::{Complex, ComplexField, DMatrix, DVector, Matrix2, RealField};
|
||||
|
||||
{
|
||||
let z = Matrix2::<Complex<f64>>::zeros();
|
||||
|
||||
let identity = Matrix2::<Complex<f64>>::identity();
|
||||
|
||||
assert!((z.exp() - identity).norm() < 1e-7);
|
||||
}
|
||||
|
||||
{
|
||||
let a = Matrix2::<Complex<f64>>::new(
|
||||
Complex::<f64>::new(0.0, 1.0),
|
||||
Complex::<f64>::new(0.0, 2.0),
|
||||
Complex::<f64>::new(0.0, -1.0),
|
||||
Complex::<f64>::new(0.0, 3.0),
|
||||
);
|
||||
|
||||
let b = Matrix2::<Complex<f64>>::new(
|
||||
Complex::<f64>::new(0.42645929666726, 1.89217550966333),
|
||||
Complex::<f64>::new(-2.13721484276556, -0.97811251808259),
|
||||
Complex::<f64>::new(1.06860742138278, 0.48905625904129),
|
||||
Complex::<f64>::new(-1.7107555460983, 0.91406299158075),
|
||||
);
|
||||
|
||||
assert!((a.exp() - b).norm() < 1.0e-07);
|
||||
}
|
||||
|
||||
{
|
||||
let d1 = Complex::<f64>::new(0.0, <f64 as RealField>::pi());
|
||||
let d2 = Complex::<f64>::new(0.0, <f64 as RealField>::frac_pi_2());
|
||||
let d3 = Complex::<f64>::new(0.0, <f64 as RealField>::frac_pi_4());
|
||||
|
||||
let m = DMatrix::<Complex<f64>>::from_diagonal(&DVector::from_row_slice(&[d1, d2, d3]));
|
||||
|
||||
let res = DMatrix::<Complex<f64>>::from_diagonal(&DVector::from_row_slice(&[
|
||||
d1.exp(),
|
||||
d2.exp(),
|
||||
d3.exp(),
|
||||
]));
|
||||
|
||||
assert!((m.exp() - res).norm() < 1e-07);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user