Replace alga by simba.

This commit is contained in:
sebcrozet 2020-03-21 12:16:46 +01:00
parent 002e735c76
commit f8cd26cfa9
101 changed files with 2041 additions and 3259 deletions

View File

@ -21,7 +21,7 @@ path = "src/lib.rs"
[features]
default = [ "std" ]
std = [ "matrixmultiply", "rand/std", "rand_distr", "alga/std" ]
std = [ "matrixmultiply", "rand/std", "rand_distr", "simba/std" ]
stdweb = [ "rand/stdweb" ]
arbitrary = [ "quickcheck" ]
serde-serialize = [ "serde", "serde_derive", "num-complex/serde" ]
@ -39,7 +39,8 @@ num-traits = { version = "0.2", default-features = false }
num-complex = { version = "0.2", default-features = false }
num-rational = { version = "0.2", default-features = false }
approx = { version = "0.3", default-features = false }
alga = { version = "0.9", default-features = false }
simba = { path = "../simba" }
#alga = { version = "0.9", default-features = false }
rand_distr = { version = "0.2", optional = true }
matrixmultiply = { version = "0.2", optional = true }
serde = { version = "1.0", optional = true }
@ -50,9 +51,6 @@ quickcheck = { version = "0.9", optional = true }
pest = { version = "2.0", optional = true }
pest_derive = { version = "2.0", optional = true }
#[patch.crates-io]
#alga = { git = "https://github.com/rustsim/alga", branch = "dev" }
[dev-dependencies]
serde_json = "1.0"
rand_xorshift = "0.2"
@ -61,7 +59,7 @@ rand_isaac = "0.2"
### We can't just let this uncommented because that would break
### compilation for #[no-std] because of the terrible Cargo bug
### https://github.com/rust-lang/cargo/issues/4866
#criterion = "0.2.10"
criterion = "0.2.10"
[workspace]
members = [ "nalgebra-lapack", "nalgebra-glm" ]
@ -73,3 +71,6 @@ path = "benches/lib.rs"
[profile.bench]
lto = true
#[patch.crates-io]
#alga = { path = "../alga/alga" }

View File

@ -1,8 +1,8 @@
extern crate alga;
extern crate nalgebra as na;
use alga::general::{RealField, RingCommutative};
use na::{Scalar, Vector3};
use simba::scalar::{RealField, RingCommutative};
fn print_vector<N: Scalar>(m: &Vector3<N>) {
println!("{:?}", m)

View File

@ -1,9 +1,9 @@
use approx::AbsDiffEq;
use num::{Bounded, FromPrimitive, Signed};
use alga::general::{Lattice, Ring};
use na::allocator::Allocator;
use na::{DimMin, DimName, Scalar, U1};
use simba::scalar::{Lattice, Ring};
/// A type-level number representing a vector, matrix row, or matrix column, dimension.
pub trait Dimension: DimName + DimMin<Self, Output = Self> {}
@ -15,9 +15,18 @@ pub trait Number:
{
}
impl<T: Scalar + Copy + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded>
Number for T
{}
impl<
T: Scalar
+ Copy
+ Ring
+ Lattice
+ AbsDiffEq<Epsilon = Self>
+ Signed
+ FromPrimitive
+ Bounded,
> Number for T
{
}
#[doc(hidden)]
pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
@ -76,4 +85,5 @@ impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: All
+ Allocator<i16, C>
+ Allocator<(usize, usize), R>
+ Allocator<(usize, usize), C>
{}
{
}

View File

@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Dim, U1};
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
use crate::ComplexHelper;
use lapack;
@ -18,19 +18,19 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serde(
bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize"
))
MatrixN<N, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serde(
bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Deserialize<'de>"
))
MatrixN<N, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct Eigen<N: Scalar, D: Dim>
@ -49,7 +49,8 @@ where
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
VectorN<N, D>: Copy,
MatrixN<N, D>: Copy,
{}
{
}
impl<N: EigenScalar + RealField, D: Dim> Eigen<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>

View File

@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Dim, U1};
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
use crate::ComplexHelper;
use lapack;
@ -18,19 +18,19 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serde(
bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize"
))
MatrixN<N, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serde(
bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Deserialize<'de>"
))
MatrixN<N, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct Schur<N: Scalar, D: Dim>
@ -47,7 +47,8 @@ where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
MatrixN<N, D>: Copy,
VectorN<N, D>: Copy,
{}
{
}
impl<N: SchurScalar + RealField, D: Dim> Schur<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>

View File

@ -4,13 +4,13 @@ use serde::{Deserialize, Serialize};
use num::Zero;
use std::ops::MulAssign;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Dim, U1};
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
use crate::ComplexHelper;
use lapack;
@ -18,21 +18,17 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize"
))
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>,
VectorN<N, D>: Deserialize<'de>,
MatrixN<N, D>: Deserialize<'de>"
))
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<N: Scalar, D: Dim>
@ -50,7 +46,8 @@ where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
MatrixN<N, D>: Copy,
VectorN<N, D>: Copy,
{}
{
}
impl<N: SymmetricEigenScalar + RealField, D: Dim> SymmetricEigen<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>

View File

@ -1,8 +1,8 @@
use crate::SimdComplexField;
use alga::general::{ClosedAdd, ClosedMul, ComplexField};
#[cfg(feature = "std")]
use matrixmultiply;
use num::{One, Signed, Zero};
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField};
#[cfg(feature = "std")]
use std::mem;

View File

@ -5,7 +5,7 @@
*
*/
use num::One;
use num::{One, Zero};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
@ -18,12 +18,11 @@ use crate::geometry::{
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point3, Rotation2, Rotation3,
};
use alga::general::{RealField, Ring};
use alga::linear::Transformation;
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
impl<N, D: DimName> MatrixN<N, D>
where
N: Scalar + Ring,
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
{
/// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
@ -42,7 +41,7 @@ where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
let mut res = Self::one();
let mut res = Self::identity();
for i in 0..scaling.len() {
res[(i, i)] = scaling[i].inlined_clone();
}
@ -57,7 +56,7 @@ where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
{
let mut res = Self::one();
let mut res = Self::identity();
res.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1)
.copy_from(translation);
@ -135,7 +134,7 @@ impl<N: RealField> Matrix4<N> {
}
/// Deprecated: Use [Matrix4::face_towards] instead.
#[deprecated(note="renamed to `face_towards`")]
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frame(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
Matrix4::face_towards(eye, target, up)
}
@ -153,7 +152,9 @@ impl<N: RealField> Matrix4<N> {
}
}
impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: Storage<N, D, D>>
SquareMatrix<N, D, S>
{
/// Computes the transformation equal to `self` followed by an uniform scaling factor.
#[inline]
#[must_use = "Did you mean to use append_scaling_mut()?"]
@ -246,7 +247,9 @@ impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
}
}
impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N, D, D>>
SquareMatrix<N, D, S>
{
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
#[inline]
pub fn append_scaling_mut(&mut self, scaling: N)
@ -370,23 +373,3 @@ where DefaultAllocator: Allocator<N, D, D>
}
}
}
impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D>
where DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, DimNameDiff<D, U1>>
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
{
#[inline]
fn transform_vector(
&self,
v: &VectorN<N, DimNameDiff<D, U1>>,
) -> VectorN<N, DimNameDiff<D, U1>>
{
self.transform_vector(v)
}
#[inline]
fn transform_point(&self, pt: &Point<N, DimNameDiff<D, U1>>) -> Point<N, DimNameDiff<D, U1>> {
self.transform_point(pt)
}
}

View File

@ -3,7 +3,7 @@
use num::{Signed, Zero};
use std::ops::{Add, Mul};
use alga::general::{ClosedDiv, ClosedMul};
use simba::scalar::{ClosedDiv, ClosedMul};
use crate::base::allocator::{Allocator, SameShapeAllocator};
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};

View File

@ -4,18 +4,18 @@ use crate::base::storage::Owned;
use quickcheck::{Arbitrary, Gen};
use num::{Bounded, One, Zero};
use rand::distributions::{Distribution, Standard};
use rand::Rng;
#[cfg(feature = "std")]
use rand;
use rand::distributions::{Distribution, Standard};
use rand::Rng;
#[cfg(feature = "std")]
use rand_distr::StandardNormal;
use std::iter;
use typenum::{self, Cmp, Greater};
#[cfg(feature = "std")]
use alga::general::RealField;
use alga::general::{ClosedAdd, ClosedMul};
use simba::scalar::RealField;
use simba::scalar::{ClosedAdd, ClosedMul};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
@ -576,9 +576,9 @@ macro_rules! impl_constructors(
// FIXME: this is not very pretty. We could find a better call syntax.
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
impl_constructors!(R, Dynamic;
=> R: DimName;
@ -693,27 +693,25 @@ macro_rules! impl_constructors_from_data(
// FIXME: this is not very pretty. We could find a better call syntax.
impl_constructors_from_data!(data; R, C; // Arguments for Matrix<N, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
impl_constructors_from_data!(data; R, Dynamic;
=> R: DimName;
R::name(), Dynamic::new(data.len() / R::dim());
);
=> R: DimName;
R::name(), Dynamic::new(data.len() / R::dim());
);
impl_constructors_from_data!(data; Dynamic, C;
=> C: DimName;
Dynamic::new(data.len() / C::dim()), C::name();
);
=> C: DimName;
Dynamic::new(data.len() / C::dim()), C::name();
);
impl_constructors_from_data!(data; Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
/*
*
* Zero, One, Rand traits.

View File

@ -1,6 +1,6 @@
use alga::general::{SubsetOf, SupersetOf};
#[cfg(feature = "mint")]
use mint;
use simba::scalar::{SubsetOf, SupersetOf};
use std::convert::{AsMut, AsRef, From, Into};
use std::mem;
use std::ptr;
@ -11,17 +11,20 @@ use typenum::Prod;
use crate::base::allocator::{Allocator, SameShapeAllocator};
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::dimension::Dynamic;
use crate::base::dimension::{
Dim, DimName, U1, U10, U11, U12, U13, U14, U15, U16, U2, U3, U4, U5, U6, U7, U8, U9,
};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::dimension::Dynamic;
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Storage, StorageMut};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::VecStorage;
use crate::base::{
ArrayStorage, DVectorSlice, DVectorSliceMut, DefaultAllocator, Matrix, MatrixMN, MatrixSlice,
MatrixSliceMut, Scalar,
};
use crate::base::{SliceStorage, SliceStorageMut};
use crate::base::{DefaultAllocator, Matrix, ArrayStorage, MatrixMN, MatrixSlice, MatrixSliceMut, Scalar, DVectorSlice, DVectorSliceMut};
use crate::constraint::DimEq;
// FIXME: too bad this won't work allo slice conversions.
@ -46,7 +49,9 @@ where
let mut res = unsafe { MatrixMN::<N2, R2, C2>::new_uninitialized_generic(nrows2, ncols2) };
for i in 0..nrows {
for j in 0..ncols {
unsafe { *res.get_unchecked_mut((i, j)) = N2::from_subset(self.get_unchecked((i, j))) }
unsafe {
*res.get_unchecked_mut((i, j)) = N2::from_subset(self.get_unchecked((i, j)))
}
}
}
@ -59,15 +64,17 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixMN<N2, R2, C2>) -> Self {
fn from_superset_unchecked(m: &MatrixMN<N2, R2, C2>) -> Self {
let (nrows2, ncols2) = m.shape();
let nrows = R1::from_usize(nrows2);
let ncols = C1::from_usize(ncols2);
let mut res = Self::new_uninitialized_generic(nrows, ncols);
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
for i in 0..nrows2 {
for j in 0..ncols2 {
*res.get_unchecked_mut((i, j)) = m.get_unchecked((i, j)).to_subset_unchecked()
unsafe {
*res.get_unchecked_mut((i, j)) = m.get_unchecked((i, j)).to_subset_unchecked()
}
}
}
@ -428,18 +435,20 @@ where
}
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a Matrix<N, R, C, S>>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: Storage<N, R, C>,
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: Storage<N, R, C>,
ShapeConstraint: DimEq<R, RSlice>
+ DimEq<C, CSlice>
+ DimEq<RStride, S::RStride>
+ DimEq<CStride, S::CStride>,
{
fn from(m: &'a Matrix<N, R, C, S>) -> Self {
let (row, col) = m.data.shape();
@ -452,27 +461,31 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
let cstride_slice = CStride::from_usize(cstride);
unsafe {
let data = SliceStorage::from_raw_parts(m.data.ptr(),
(row_slice, col_slice),
(rstride_slice, cstride_slice));
let data = SliceStorage::from_raw_parts(
m.data.ptr(),
(row_slice, col_slice),
(rstride_slice, cstride_slice),
);
Matrix::from_data_statically_unchecked(data)
}
}
}
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: Storage<N, R, C>,
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: Storage<N, R, C>,
ShapeConstraint: DimEq<R, RSlice>
+ DimEq<C, CSlice>
+ DimEq<RStride, S::RStride>
+ DimEq<CStride, S::CStride>,
{
fn from(m: &'a mut Matrix<N, R, C, S>) -> Self {
let (row, col) = m.data.shape();
@ -485,27 +498,31 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
let cstride_slice = CStride::from_usize(cstride);
unsafe {
let data = SliceStorage::from_raw_parts(m.data.ptr(),
(row_slice, col_slice),
(rstride_slice, cstride_slice));
let data = SliceStorage::from_raw_parts(
m.data.ptr(),
(row_slice, col_slice),
(rstride_slice, cstride_slice),
);
Matrix::from_data_statically_unchecked(data)
}
}
}
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: StorageMut<N, R, C>,
ShapeConstraint: DimEq<R, RSlice> + DimEq<C, CSlice>
+ DimEq<RStride, S::RStride> + DimEq<CStride, S::CStride>
for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
where
N: Scalar,
R: Dim,
C: Dim,
RSlice: Dim,
CSlice: Dim,
RStride: Dim,
CStride: Dim,
S: StorageMut<N, R, C>,
ShapeConstraint: DimEq<R, RSlice>
+ DimEq<C, CSlice>
+ DimEq<RStride, S::RStride>
+ DimEq<CStride, S::CStride>,
{
fn from(m: &'a mut Matrix<N, R, C, S>) -> Self {
let (row, col) = m.data.shape();
@ -518,29 +535,34 @@ for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
let cstride_slice = CStride::from_usize(cstride);
unsafe {
let data = SliceStorageMut::from_raw_parts(m.data.ptr_mut(),
(row_slice, col_slice),
(rstride_slice, cstride_slice));
let data = SliceStorageMut::from_raw_parts(
m.data.ptr_mut(),
(row_slice, col_slice),
(rstride_slice, cstride_slice),
);
Matrix::from_data_statically_unchecked(data)
}
}
}
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Into<&'a [N]> for &'a Matrix<N, R, C, S> {
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Into<&'a [N]>
for &'a Matrix<N, R, C, S>
{
#[inline]
fn into(self) -> &'a [N] {
self.as_slice()
}
}
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Into<&'a mut [N]> for &'a mut Matrix<N, R, C, S> {
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Into<&'a mut [N]>
for &'a mut Matrix<N, R, C, S>
{
#[inline]
fn into(self) -> &'a mut [N] {
self.as_mut_slice()
}
}
impl<'a, N: Scalar + Copy> From<&'a [N]> for DVectorSlice<'a, N> {
#[inline]
fn from(slice: &'a [N]) -> Self {

View File

@ -190,7 +190,6 @@ pub trait DimName: Dim {
type Value: NamedDim<Name = Self>;
/// The name of this dimension, i.e., the singleton `Self`.
#[inline]
fn name() -> Self;
// FIXME: this is not a very idiomatic name.

View File

@ -16,8 +16,8 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Field, RealField, Ring};
use alga::simd::SimdPartialOrd;
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub, Field, RealField};
use simba::simd::SimdPartialOrd;
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
@ -29,7 +29,7 @@ use crate::base::storage::{
ContiguousStorage, ContiguousStorageMut, Owned, SameShapeStorage, Storage, StorageMut,
};
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar, Unit, VectorN};
use crate::{SimdComplexField, SimdRealField};
use crate::SimdComplexField;
/// A square matrix.
pub type SquareMatrix<N, D, S> = Matrix<N, D, D, S>;
@ -1130,7 +1130,7 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
#[inline]
pub fn trace(&self) -> N
where N: Ring {
where N: Scalar + Zero + ClosedAdd {
assert!(
self.is_square(),
"Cannot compute the trace of non-square matrix."
@ -1517,7 +1517,9 @@ fn lower_exp() {
)
}
impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N, R, C>>
Matrix<N, R, C, S>
{
/// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`.
#[inline]
pub fn perp<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> N

View File

@ -1,424 +0,0 @@
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use num::{One, Zero};
use alga::general::{
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
Multiplicative, RingCommutative, ComplexField
};
use alga::linear::{
FiniteDimInnerSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace, VectorSpace,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar};
/*
*
* Additive structures.
*
*/
impl<N, R: DimName, C: DimName> Identity<Additive> for MatrixMN<N, R, C>
where
N: Scalar + Zero,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn identity() -> Self {
Self::from_element(N::zero())
}
}
impl<N, R: DimName, C: DimName> AbstractMagma<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self + other
}
}
impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedNeg,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
-self
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
*self = -self.clone()
}
}
macro_rules! inherit_additive_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, R: DimName, C: DimName> $marker<$operator> for MatrixMN<N, R, C>
where N: Scalar + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, R, C> { }
)*}
);
inherit_additive_structure!(
AbstractSemigroup<Additive> + ClosedAdd,
AbstractMonoid<Additive> + Zero + ClosedAdd,
AbstractQuasigroup<Additive> + ClosedAdd + ClosedNeg,
AbstractLoop<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroup<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroupAbelian<Additive> + Zero + ClosedAdd + ClosedNeg
);
impl<N, R: DimName, C: DimName> AbstractModule for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type AbstractRing = N;
#[inline]
fn multiply_by(&self, n: N) -> Self {
self * n
}
}
impl<N, R: DimName, C: DimName> Module for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type Ring = N;
}
impl<N, R: DimName, C: DimName> VectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
type Field = N;
}
impl<N, R: DimName, C: DimName> FiniteDimVectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn dimension() -> usize {
R::dim() * C::dim()
}
#[inline]
fn canonical_basis_element(i: usize) -> Self {
assert!(i < Self::dimension(), "Index out of bound.");
let mut res = Self::zero();
unsafe {
*res.data.get_unchecked_linear_mut(i) = N::one();
}
res
}
#[inline]
fn dot(&self, other: &Self) -> N {
self.dot(other)
}
#[inline]
unsafe fn component_unchecked(&self, i: usize) -> &N {
self.data.get_unchecked_linear(i)
}
#[inline]
unsafe fn component_unchecked_mut(&mut self, i: usize) -> &mut N {
self.data.get_unchecked_linear_mut(i)
}
}
impl<N: ComplexField, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
type RealField = N::RealField;
type ComplexField = N;
#[inline]
fn norm_squared(&self) -> N::RealField {
self.norm_squared()
}
#[inline]
fn norm(&self) -> N::RealField {
self.norm()
}
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
fn normalize(&self) -> Self {
self.normalize()
}
#[inline]
fn normalize_mut(&mut self) -> N::RealField {
self.normalize_mut()
}
#[inline]
#[must_use = "Did you mean to use try_normalize_mut()?"]
fn try_normalize(&self, min_norm: N::RealField) -> Option<Self> {
self.try_normalize(min_norm)
}
#[inline]
fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
self.try_normalize_mut(min_norm)
}
}
impl<N: ComplexField, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn angle(&self, other: &Self) -> N::RealField {
self.angle(other)
}
#[inline]
fn inner_product(&self, other: &Self) -> N {
self.dotc(other)
}
}
// FIXME: specialization will greatly simplify this implementation in the future.
// In particular:
// use `x()` instead of `::canonical_basis_element`
// use `::new(x, y, z)` instead of `::from_slice`
impl<N: ComplexField, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn orthonormalize(vs: &mut [Self]) -> usize {
let mut nbasis_elements = 0;
for i in 0..vs.len() {
{
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
for basis_element in &basis[..nbasis_elements] {
*elt -= &*basis_element * elt.dot(basis_element)
}
}
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
// FIXME: this will be efficient on dynamically-allocated vectors but for
// statically-allocated ones, `.clone_from` would be better.
vs.swap(nbasis_elements, i);
nbasis_elements += 1;
// All the other vectors will be dependent.
if nbasis_elements == Self::dimension() {
break;
}
}
}
nbasis_elements
}
#[inline]
fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where F: FnMut(&Self) -> bool {
// FIXME: is this necessary?
assert!(
vs.len() <= Self::dimension(),
"The given set of vectors has no chance of being a free family."
);
match Self::dimension() {
1 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0));
}
}
2 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1));
} else if vs.len() == 1 {
let v = &vs[0];
let res = Self::from_column_slice(&[-v[1], v[0]]);
let _ = f(&res.normalize());
}
// Otherwise, nothing.
}
3 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1))
&& f(&Self::canonical_basis_element(2));
} else if vs.len() == 1 {
let v = &vs[0];
let mut a;
if v[0].norm1() > v[1].norm1() {
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
} else {
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
};
let _ = a.normalize_mut();
if f(&a.cross(v)) {
let _ = f(&a);
}
} else if vs.len() == 2 {
let _ = f(&vs[0].cross(&vs[1]).normalize());
}
}
_ => {
#[cfg(any(feature = "std", feature = "alloc"))]
{
// XXX: use a GenericArray instead.
let mut known_basis = Vec::new();
for v in vs.iter() {
known_basis.push(v.normalize())
}
for i in 0..Self::dimension() - vs.len() {
let mut elt = Self::canonical_basis_element(i);
for v in &known_basis {
elt -= v * elt.dot(v)
}
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
if !f(&subsp_elt) {
return;
};
known_basis.push(subsp_elt);
}
}
}
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
{
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
}
}
}
}
}
/*
*
*
* Multiplicative structures.
*
*
*/
impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self * other
}
}
macro_rules! impl_multiplicative_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, D: DimName> $marker<$operator> for MatrixN<N, D>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, D, D> { }
)*}
);
impl_multiplicative_structure!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative> + One
);
/*
*
* Ordering
*
*/
impl<N, R: Dim, C: Dim> MeetSemilattice for MatrixMN<N, R, C>
where
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.meet(&b))
}
}
impl<N, R: Dim, C: Dim> JoinSemilattice for MatrixMN<N, R, C>
where
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn join(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.join(&b))
}
}
impl<N, R: Dim, C: Dim> Lattice for MatrixMN<N, R, C>
where
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet_join(&self, other: &Self) -> (Self, Self) {
let shape = self.data.shape();
assert!(
shape == other.data.shape(),
"Matrix meet/join error: mismatched dimensions."
);
let mut mres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
let mut jres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
for i in 0..shape.0.value() * shape.1.value() {
unsafe {
let mj = self
.data
.get_unchecked_linear(i)
.meet_join(other.data.get_unchecked_linear(i));
*mres.data.get_unchecked_linear_mut(i) = mj.0;
*jres.data.get_unchecked_linear_mut(i) = mj.1;
}
}
(mres, jres)
}
}

65
src/base/matrix_simba.rs Normal file
View File

@ -0,0 +1,65 @@
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::Dim;
use crate::base::{DefaultAllocator, MatrixMN, Scalar};
/*
*
* Simd structures.
*
*/
impl<N, R, C> SimdValue for MatrixMN<N, R, C>
where
N: Scalar + SimdValue,
R: Dim,
C: Dim,
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
type Element = MatrixMN<N::Element, R, C>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
val.map(N::splat)
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
self.map(|e| e.extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
self.map(|e| e.extract_unchecked(i))
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.zip_apply(&val, |mut a, b| {
a.replace(i, b);
a
})
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.zip_apply(&val, |mut a, b| {
a.replace_unchecked(i, b);
a
})
}
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
self.zip_map(&other, |a, b| a.select(cond, b))
}
}

View File

@ -12,6 +12,7 @@ pub mod storage;
mod alias;
mod alias_slice;
mod array_storage;
mod cg;
mod componentwise;
mod construction;
@ -20,25 +21,24 @@ mod conversion;
mod edition;
pub mod indexing;
mod matrix;
mod matrix_alga;
mod array_storage;
mod matrix_simba;
mod matrix_slice;
#[cfg(any(feature = "std", feature = "alloc"))]
mod vec_storage;
mod norm;
mod properties;
mod scalar;
mod statistics;
mod swizzle;
mod unit;
mod statistics;
mod norm;
#[cfg(any(feature = "std", feature = "alloc"))]
mod vec_storage;
#[doc(hidden)]
pub mod helper;
pub use self::matrix::*;
pub use self::norm::*;
pub use self::scalar::*;
pub use self::unit::*;
pub use self::norm::*;
pub use self::default_allocator::*;
pub use self::dimension::*;

View File

@ -1,11 +1,13 @@
use num::Zero;
use std::ops::Neg;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Dim, Matrix, MatrixMN};
use crate::base::{DefaultAllocator, Dim, Matrix, MatrixMN, Normed};
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::storage::{Storage, StorageMut};
use crate::{ComplexField, RealField, SimdComplexField, SimdRealField};
use alga::simd::SimdPartialOrd;
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
use simba::scalar::ClosedNeg;
use simba::simd::{SimdOption, SimdPartialOrd};
// FIXME: this should be be a trait on alga?
/// A trait for abstract matrix norms.
@ -272,6 +274,19 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
pub fn lp_norm(&self, p: i32) -> N::SimdRealField {
self.apply_norm(&LpNorm(p))
}
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption<MatrixMN<N, R, C>>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
let val = self.unscale(n);
SimdOption::new(val, le)
}
}
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
@ -313,6 +328,22 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C
n
}
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize_mut(
&mut self,
min_norm: N::SimdRealField,
) -> SimdOption<N::SimdRealField>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
self.apply(|e| e.simd_unscale(n).select(le, e));
SimdOption::new(n, le)
}
}
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
@ -320,8 +351,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S>
///
/// If the normalization succeeded, returns the old norm of this matrix.
#[inline]
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField>
where N: ComplexField {
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
let n = self.norm();
if n <= min_norm {
@ -332,3 +362,40 @@ impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S>
}
}
}
impl<N: SimdComplexField, R: Dim, C: Dim> Normed for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
type Norm = N::SimdRealField;
#[inline]
fn norm(&self) -> N::SimdRealField {
self.norm()
}
#[inline]
fn norm_squared(&self) -> N::SimdRealField {
self.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.unscale_mut(n)
}
}
impl<N: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<MatrixMN<N, R, C>>
where DefaultAllocator: Allocator<N, R, C>
{
type Output = Unit<MatrixMN<N, R, C>>;
#[inline]
fn neg(self) -> Self::Output {
Unit::new_unchecked(-self.value)
}
}

View File

@ -1,12 +1,11 @@
use num::{One, Signed, Zero};
use std::cmp::{Ordering, PartialOrd};
use num::{One, Zero};
use std::iter;
use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
use alga::simd::{SimdPartialOrd, SimdSigned};
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
use simba::simd::{SimdPartialOrd, SimdSigned};
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::constraint::{

View File

@ -2,7 +2,7 @@
use approx::RelativeEq;
use num::{One, Zero};
use alga::general::{ClosedAdd, ClosedMul, RealField, ComplexField};
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimMin};
@ -91,11 +91,11 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// equal to `eps`.
#[inline]
pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool
where
N: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C, C>,
where
N: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C, C>,
{
(self.ad_mul(self)).is_identity(eps)
}

View File

@ -1,21 +1,28 @@
use crate::{Scalar, Dim, Matrix, VectorN, RowVectorN, DefaultAllocator, U1, VectorSliceN};
use alga::general::{AdditiveMonoid, Field, SupersetOf};
use crate::storage::Storage;
use crate::allocator::Allocator;
use crate::storage::Storage;
use crate::{DefaultAllocator, Dim, Matrix, RowVectorN, Scalar, VectorN, VectorSliceN, U1};
use num::Zero;
use simba::scalar::{ClosedAdd, Field, SupersetOf};
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a row vector where each element is the result of the application of `f` on the
/// corresponding column of the original matrix.
#[inline]
pub fn compress_rows(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
pub fn compress_rows(
&self,
f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N,
) -> RowVectorN<N, C>
where
DefaultAllocator: Allocator<N, U1, C>,
{
let ncols = self.data.shape().1;
let mut res = unsafe { RowVectorN::new_uninitialized_generic(U1, ncols) };
for i in 0..ncols.value() {
// FIXME: avoid bound checking of column.
unsafe { *res.get_unchecked_mut((0, i)) = f(self.column(i)); }
unsafe {
*res.get_unchecked_mut((0, i)) = f(self.column(i));
}
}
res
@ -26,15 +33,21 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
///
/// This is the same as `self.compress_rows(f).transpose()`.
#[inline]
pub fn compress_rows_tr(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
pub fn compress_rows_tr(
&self,
f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N,
) -> VectorN<N, C>
where
DefaultAllocator: Allocator<N, C>,
{
let ncols = self.data.shape().1;
let mut res = unsafe { VectorN::new_uninitialized_generic(ncols, U1) };
for i in 0..ncols.value() {
// FIXME: avoid bound checking of column.
unsafe { *res.vget_unchecked_mut(i) = f(self.column(i)); }
unsafe {
*res.vget_unchecked_mut(i) = f(self.column(i));
}
}
res
@ -42,8 +55,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a column vector resulting from the folding of `f` on each column of this matrix.
#[inline]
pub fn compress_columns(&self, init: VectorN<N, R>, f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>)) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
pub fn compress_columns(
&self,
init: VectorN<N, R>,
f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>),
) -> VectorN<N, R>
where
DefaultAllocator: Allocator<N, R>,
{
let mut res = init;
for i in 0..self.ncols() {
@ -54,7 +73,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
}
}
impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/*
*
* Sum computation.
@ -95,7 +114,7 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
/// ```
#[inline]
pub fn row_sum(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.sum())
}
@ -116,7 +135,7 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
/// ```
#[inline]
pub fn row_sum_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.sum())
}
@ -137,7 +156,7 @@ impl<N: Scalar + AdditiveMonoid, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N,
/// ```
#[inline]
pub fn column_sum(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
where DefaultAllocator: Allocator<N, R> {
let nrows = self.data.shape().0;
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
*out += col;
@ -168,7 +187,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
if self.len() == 0 {
N::zero()
} else {
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b));
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| {
(a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b)
});
let denom = N::one() / crate::convert::<_, N>(self.len() as f64);
let vd = val.1 * denom.inlined_clone();
val.0 * denom - vd.inlined_clone() * vd
@ -189,7 +210,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn row_variance(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.variance())
}
@ -206,7 +227,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn row_variance_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.variance())
}
@ -224,7 +245,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn column_variance(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
where DefaultAllocator: Allocator<N, R> {
let (nrows, ncols) = self.data.shape();
let mut mean = self.column_mean();
@ -235,7 +256,8 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
for i in 0..nrows.value() {
unsafe {
let val = col.vget_unchecked(i);
*out.vget_unchecked_mut(i) += denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
*out.vget_unchecked_mut(i) +=
denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
}
}
})
@ -281,7 +303,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn row_mean(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.mean())
}
@ -298,7 +320,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn row_mean_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.mean())
}
@ -315,7 +337,7 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
/// ```
#[inline]
pub fn column_mean(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
where DefaultAllocator: Allocator<N, R> {
let (nrows, ncols) = self.data.shape();
let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64);
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {

View File

@ -94,13 +94,11 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
}
/// Indicates whether this data buffer stores its elements contiguously.
#[inline]
fn is_contiguous(&self) -> bool;
/// Retrieves the data buffer as a contiguous slice.
///
/// The matrix components may not be stored in a contiguous way, depending on the strides.
#[inline]
fn as_slice(&self) -> &[N];
/// Builds a matrix data storage that does not contain any reference.
@ -166,7 +164,6 @@ pub unsafe trait StorageMut<N: Scalar, R: Dim, C: Dim = U1>: Storage<N, R, C> {
/// Retrieves the mutable data buffer as a contiguous slice.
///
/// Matrix components may not be contiguous, depending on its strides.
#[inline]
fn as_mut_slice(&mut self) -> &mut [N];
}

View File

@ -1,8 +1,7 @@
use approx::RelativeEq;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::mem;
use std::ops::{Deref, Neg};
use std::ops::Deref;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
@ -10,8 +9,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{SubsetOf, ComplexField};
use alga::linear::NormedSpace;
use crate::{RealField, SimdComplexField, SimdRealField};
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
@ -19,7 +17,7 @@ use alga::linear::NormedSpace;
#[repr(transparent)]
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
pub struct Unit<T> {
value: T,
pub(crate) value: T,
}
#[cfg(feature = "serde-serialize")]
@ -53,60 +51,76 @@ impl<T: Abomonation> Abomonation for Unit<T> {
}
}
impl<T: NormedSpace> Unit<T> {
/// Normalize the given value and return it wrapped on a `Unit` structure.
pub trait Normed {
type Norm: SimdRealField;
fn norm(&self) -> Self::Norm;
fn norm_squared(&self) -> Self::Norm;
fn scale_mut(&mut self, n: Self::Norm);
fn unscale_mut(&mut self, n: Self::Norm);
}
impl<T: Normed> Unit<T> {
/// Normalize the given vector and return it wrapped on a `Unit` structure.
#[inline]
pub fn new_normalize(value: T) -> Self {
Self::new_and_get(value).0
}
/// Attempts to normalize the given value and return it wrapped on a `Unit` structure.
/// Attempts to normalize the given vector and return it wrapped on a `Unit` structure.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new(value: T, min_norm: T::RealField) -> Option<Self> {
pub fn try_new(value: T, min_norm: T::Norm) -> Option<Self>
where T::Norm: RealField {
Self::try_new_and_get(value, min_norm).map(|res| res.0)
}
/// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
#[inline]
pub fn new_and_get(mut value: T) -> (Self, T::RealField) {
let n = value.normalize_mut();
(Unit { value: value }, n)
pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
let n = value.norm();
value.unscale_mut(n);
(Unit { value }, n)
}
/// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new_and_get(mut value: T, min_norm: T::RealField) -> Option<(Self, T::RealField)> {
if let Some(n) = value.try_normalize_mut(min_norm) {
Some((Unit { value: value }, n))
pub fn try_new_and_get(mut value: T, min_norm: T::Norm) -> Option<(Self, T::Norm)>
where T::Norm: RealField {
let sq_norm = value.norm_squared();
if sq_norm > min_norm * min_norm {
let n = sq_norm.simd_sqrt();
value.unscale_mut(n);
Some((Unit { value }, n))
} else {
None
}
}
/// Normalizes this value again. This is useful when repeated computations
/// Normalizes this vector again. This is useful when repeated computations
/// might cause a drift in the norm because of float inaccuracies.
///
/// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
/// that may be slightly less accurate if `self` drifted significantly from having a unit length.
#[inline]
pub fn renormalize(&mut self) -> T::RealField {
self.value.normalize_mut()
pub fn renormalize(&mut self) -> T::Norm {
let n = self.norm();
self.value.unscale_mut(n);
n
}
/// Normalizes this value again using a first-order Taylor approximation.
/// Normalizes this vector again using a first-order Taylor approximation.
/// This is useful when repeated computations might cause a drift in the norm
/// because of float inaccuracies.
#[inline]
pub fn renormalize_fast(&mut self) {
let sq_norm = self.value.norm_squared();
let _3: T::RealField = crate::convert(3.0);
let _0_5: T::RealField = crate::convert(0.5);
self.value *= T::ComplexField::from_real(_0_5 * (_3 - sq_norm));
let _3: T::Norm = crate::convert(3.0);
let _0_5: T::Norm = crate::convert(0.5);
self.value.scale_mut(_0_5 * (_3 - sq_norm));
}
}
@ -114,7 +128,7 @@ impl<T> Unit<T> {
/// Wraps the given value, assuming it is already normalized.
#[inline]
pub fn new_unchecked(value: T) -> Self {
Unit { value: value }
Unit { value }
}
/// Wraps the given reference, assuming it is already normalized.
@ -131,7 +145,7 @@ impl<T> Unit<T> {
/// Retrieves the underlying value.
/// Deprecated: use [Unit::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> T {
self.value
@ -153,13 +167,14 @@ impl<T> AsRef<T> for Unit<T> {
}
}
/*
/*
*
* Conversions.
*
*/
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where T::Field: RelativeEq
where T::RealField: RelativeEq
{
#[inline]
fn to_superset(&self) -> T {
@ -172,7 +187,7 @@ where T::Field: RelativeEq
}
#[inline]
unsafe fn from_superset_unchecked(value: &T) -> Self {
fn from_superset_unchecked(value: &T) -> Self {
Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
}
}
@ -205,7 +220,7 @@ where T::Field: RelativeEq
// self.value.ulps_eq(&other.value, epsilon, max_ulps)
// }
// }
*/
// FIXME:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/*
@ -217,15 +232,6 @@ impl<T: fmt::Display> fmt::Display for Unit<T> {
}
*/
impl<T: Neg> Neg for Unit<T> {
type Output = Unit<T::Output>;
#[inline]
fn neg(self) -> Self::Output {
Self::Output::new_unchecked(-self.value)
}
}
impl<T> Deref for Unit<T> {
type Target = T;

View File

@ -3,12 +3,12 @@ use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use alga::general::ComplexField;
use crate::base::Scalar;
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, Dynamic, U2};
use crate::base::Scalar;
use crate::base::{DefaultAllocator, MatrixN};
use crate::linalg::givens::GivensRotation;
use simba::scalar::ComplexField;
/// A random orthogonal matrix.
#[derive(Clone, Debug)]

View File

@ -3,11 +3,11 @@ use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use alga::general::ComplexField;
use crate::base::Scalar;
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, Dynamic};
use crate::base::Scalar;
use crate::base::{DefaultAllocator, MatrixN};
use simba::scalar::ComplexField;
use crate::debug::RandomOrthogonal;

View File

@ -0,0 +1,136 @@
use crate::allocator::Allocator;
use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
use crate::{DefaultAllocator, DimName, Point, RealField, Scalar, VectorN, U2, U3};
use simba::scalar::ClosedMul;
pub trait AbstractRotation<N: Scalar, D: DimName>: PartialEq + ClosedMul + Clone {
fn identity() -> Self;
fn inverse(&self) -> Self;
fn inverse_mut(&mut self);
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
where DefaultAllocator: Allocator<N, D>;
fn transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where DefaultAllocator: Allocator<N, D>;
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
where DefaultAllocator: Allocator<N, D>;
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where DefaultAllocator: Allocator<N, D>;
}
impl<N: RealField, D: DimName> AbstractRotation<N, D> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
where DefaultAllocator: Allocator<N, D> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where DefaultAllocator: Allocator<N, D> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
where DefaultAllocator: Allocator<N, D> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where DefaultAllocator: Allocator<N, D> {
self.inverse_transform_point(p)
}
}
impl<N: RealField> AbstractRotation<N, U3> for UnitQuaternion<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, U3>) -> VectorN<N, U3> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<N, U3>) -> Point<N, U3> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, U3>) -> VectorN<N, U3> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<N, U3>) -> Point<N, U3> {
self.inverse_transform_point(p)
}
}
impl<N: RealField> AbstractRotation<N, U2> for UnitComplex<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, U2>) -> VectorN<N, U2> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<N, U2>) -> Point<N, U2> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, U2>) -> VectorN<N, U2> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<N, U2>) -> Point<N, U2> {
self.inverse_transform_point(p)
}
}

View File

@ -11,14 +11,13 @@ use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{RealField, SubsetOf};
use alga::linear::Rotation;
use simba::scalar::{RealField, SubsetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{DefaultAllocator, MatrixN, VectorN};
use crate::geometry::{Point, Translation};
use crate::geometry::{AbstractRotation, Point, Translation};
/// A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
#[repr(C)]
@ -77,7 +76,8 @@ where
}
}
impl<N: RealField + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash for Isometry<N, D, R>
impl<N: RealField + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash
for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: hash::Hash,
@ -88,14 +88,14 @@ where
}
}
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R>
impl<N: RealField, D: DimName + Copy, R: AbstractRotation<N, D> + Copy> Copy for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{
}
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
impl<N: RealField, D: DimName, R: AbstractRotation<N, D> + Clone> Clone for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
@ -104,7 +104,7 @@ where DefaultAllocator: Allocator<N, D>
}
}
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R>
impl<N: RealField, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
/// Creates a new isometry from its rotational and translational parts.
@ -167,7 +167,7 @@ where DefaultAllocator: Allocator<N, D>
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.two_sided_inverse_mut();
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
@ -208,7 +208,7 @@ where DefaultAllocator: Allocator<N, D>
/// ```
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(&r);
self.rotation = r.clone() * self.rotation.clone();
self.translation.vector = r.transform_vector(&self.translation.vector);
}
@ -253,7 +253,7 @@ where DefaultAllocator: Allocator<N, D>
/// ```
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(r);
self.rotation = r.clone() * self.rotation.clone();
}
/// Transform the given point by this isometry.
@ -387,14 +387,14 @@ where DefaultAllocator: Allocator<N, D>
impl<N: RealField, D: DimName, R> Eq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + Eq,
R: AbstractRotation<N, D> + Eq,
DefaultAllocator: Allocator<N, D>,
{
}
impl<N: RealField, D: DimName, R> PartialEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + PartialEq,
R: AbstractRotation<N, D> + PartialEq,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
@ -405,7 +405,7 @@ where
impl<N: RealField, D: DimName, R> AbsDiffEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
@ -425,7 +425,7 @@ where
impl<N: RealField, D: DimName, R> RelativeEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
@ -452,7 +452,7 @@ where
impl<N: RealField, D: DimName, R> UlpsEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{

View File

@ -1,203 +0,0 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::Isometry as AlgaIsometry;
use alga::linear::{
AffineTransformation, DirectIsometry, ProjectiveTransformation, Rotation, Similarity,
Transformation,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Isometry, Point, Translation};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName, R> $marker<$operator> for Isometry<N, D, R>
where R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type Rotation = R;
type NonUniformScaling = Id;
type Translation = Translation<N, D>;
#[inline]
fn decompose(&self) -> (Self::Translation, R, Id, R) {
(
self.translation.clone(),
self.rotation.clone(),
Id::new(),
R::identity(),
)
}
#[inline]
fn append_translation(&self, t: &Self::Translation) -> Self {
t * self
}
#[inline]
fn prepend_translation(&self, t: &Self::Translation) -> Self {
self * t
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
let shift = r.transform_vector(&self.translation.vector);
Isometry::from_parts(Translation::from(shift), r.clone() * self.rotation.clone())
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &Point<N, D>) -> Option<Self> {
let mut res = self.clone();
res.append_rotation_wrt_point_mut(r, p);
Some(res)
}
}
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Translation<N, D> {
self.translation.clone()
}
#[inline]
fn rotation(&self) -> R {
self.rotation.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField, D: DimName, R> $Trait<Point<N, D>> for Isometry<N, D, R>
where R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D> { }
)*}
);
marker_impl!(AlgaIsometry, DirectIsometry);

View File

@ -7,19 +7,18 @@ use num::One;
use rand::distributions::{Distribution, Standard};
use rand::Rng;
use alga::general::RealField;
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U2, U3};
use crate::base::{DefaultAllocator, Vector2, Vector3};
use crate::geometry::{
Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation, UnitComplex,
UnitQuaternion, Translation2, Translation3
AbstractRotation, Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation,
Translation2, Translation3, UnitComplex, UnitQuaternion,
};
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R>
impl<N: RealField, D: DimName, R: AbstractRotation<N, D>> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
/// Creates a new identity isometry.
@ -65,7 +64,7 @@ where DefaultAllocator: Allocator<N, D>
}
}
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R>
impl<N: RealField, D: DimName, R: AbstractRotation<N, D>> One for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
/// Creates a new identity isometry.
@ -77,7 +76,7 @@ where DefaultAllocator: Allocator<N, D>
impl<N: RealField, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard
where
R: AlgaRotation<Point<N, D>>,
R: AbstractRotation<N, D>,
Standard: Distribution<N> + Distribution<R>,
DefaultAllocator: Allocator<N, D>,
{
@ -91,7 +90,7 @@ where
impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R>
where
N: RealField + Arbitrary + Send,
R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
R: AbstractRotation<N, D> + Arbitrary + Send,
Owned<N, D>: Send,
DefaultAllocator: Allocator<N, D>,
{

View File

@ -1,11 +1,12 @@
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN};
use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
use crate::geometry::{
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
};
/*
* This file provides the following conversions:
@ -21,8 +22,8 @@ impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1,
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
R2: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
@ -37,7 +38,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
Isometry::from_parts(
iso.translation.to_subset_unchecked(),
iso.rotation.to_subset_unchecked(),
@ -49,8 +50,8 @@ impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
R2: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
@ -64,7 +65,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
@ -74,7 +75,7 @@ where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>>
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
@ -98,7 +99,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -107,7 +108,7 @@ impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D,
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>>
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
@ -139,7 +140,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
let t = Translation {
vector: crate::convert_unchecked(t),

View File

@ -1,13 +1,14 @@
use num::{One, Zero};
use std::ops::{Div, DivAssign, Mul, MulAssign};
use alga::general::RealField;
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U1, U3, U4};
use crate::base::{DefaultAllocator, Unit, VectorN};
use crate::Scalar;
use crate::geometry::{Isometry, Point, Rotation, Translation, UnitQuaternion};
use crate::geometry::{AbstractRotation, Isometry, Point, Rotation, Translation, UnitQuaternion};
// FIXME: there are several cloning of rotations that we could probably get rid of (but we didn't
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
@ -65,7 +66,7 @@ macro_rules! isometry_binop_impl(
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: RealField, D: DimName, R> $Op<$Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
type Output = $Output;
@ -112,7 +113,7 @@ macro_rules! isometry_binop_assign_impl_all(
[val] => $action_val: expr;
[ref] => $action_ref: expr;) => {
impl<N: RealField, D: DimName, R> $OpAssign<$Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: $Rhs) {
@ -121,7 +122,7 @@ macro_rules! isometry_binop_assign_impl_all(
}
impl<'b, N: RealField, D: DimName, R> $OpAssign<&'b $Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: &'b $Rhs) {
@ -189,39 +190,38 @@ isometry_binop_assign_impl_all!(
// Isometry ×= R
// Isometry ÷= R
isometry_binop_assign_impl_all!(
MulAssign, mul_assign;
self: Isometry<N, D, R>, rhs: R;
md_assign_impl_all!(
MulAssign, mul_assign where N: RealField;
(D, U1), (D, D) for D: DimName;
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
[val] => self.rotation *= rhs;
[ref] => self.rotation *= rhs.clone();
);
isometry_binop_assign_impl_all!(
DivAssign, div_assign;
self: Isometry<N, D, R>, rhs: R;
md_assign_impl_all!(
DivAssign, div_assign where N: RealField;
(D, U1), (D, D) for D: DimName;
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
// FIXME: don't invert explicitly?
[val] => *self *= rhs.two_sided_inverse();
[ref] => *self *= rhs.two_sided_inverse();
[val] => *self *= rhs.inverse();
[ref] => *self *= rhs.inverse();
);
// Isometry × R
// Isometry ÷ R
isometry_binop_impl_all!(
Mul, mul;
self: Isometry<N, D, R>, rhs: R, Output = Isometry<N, D, R>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
md_assign_impl_all!(
MulAssign, mul_assign where N: RealField;
(U3, U3), (U3, U3) for;
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
[val] => self.rotation *= rhs;
[ref] => self.rotation *= rhs.clone();
);
isometry_binop_impl_all!(
Div, div;
self: Isometry<N, D, R>, rhs: R, Output = Isometry<N, D, R>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
md_assign_impl_all!(
DivAssign, div_assign where N: RealField;
(U3, U3), (U3, U3) for;
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
// FIXME: don't invert explicitly?
[val] => *self *= rhs.inverse();
[ref] => *self *= rhs.inverse();
);
// Isometry × Point
@ -357,6 +357,18 @@ isometry_from_composition_impl_all!(
[ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), self.clone());
);
// Isometry × Rotation
isometry_from_composition_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName;
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
Output = Isometry<N, D, Rotation<N, D>>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
);
// Rotation × Isometry
isometry_from_composition_impl_all!(
Mul, mul;
@ -372,6 +384,18 @@ isometry_from_composition_impl_all!(
};
);
// Isometry ÷ Rotation
isometry_from_composition_impl_all!(
Div, div;
(D, D), (D, U1) for D: DimName;
self: Isometry<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
Output = Isometry<N, D, Rotation<N, D>>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone.
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
);
// Rotation ÷ Isometry
isometry_from_composition_impl_all!(
Div, div;
@ -385,6 +409,18 @@ isometry_from_composition_impl_all!(
[ref ref] => self * right.inverse();
);
// Isometry × UnitQuaternion
isometry_from_composition_impl_all!(
Mul, mul;
(U4, U1), (U3, U1);
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
Output = Isometry<N, U3, UnitQuaternion<N>>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone.
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
);
// UnitQuaternion × Isometry
isometry_from_composition_impl_all!(
Mul, mul;
@ -400,6 +436,18 @@ isometry_from_composition_impl_all!(
};
);
// Isometry ÷ UnitQuaternion
isometry_from_composition_impl_all!(
Div, div;
(U4, U1), (U3, U1);
self: Isometry<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
Output = Isometry<N, U3, UnitQuaternion<N>>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone.
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
);
// UnitQuaternion ÷ Isometry
isometry_from_composition_impl_all!(
Div, div;

62
src/geometry/isometry_simba.rs Executable file
View File

@ -0,0 +1,62 @@
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, Scalar};
use crate::RealField;
use crate::geometry::{AbstractRotation, Isometry, Translation};
impl<N: RealField, D: DimName, R> SimdValue for Isometry<N, D, R>
where
N::Element: Scalar,
R: SimdValue<SimdBool = N::SimdBool> + AbstractRotation<N, D>,
R::Element: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
type Element = Isometry<N::Element, D, R::Element>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
Isometry::from_parts(Translation::splat(val.translation), R::splat(val.rotation))
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
Isometry::from_parts(self.translation.extract(i), self.rotation.extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
Isometry::from_parts(
self.translation.extract_unchecked(i),
self.rotation.extract_unchecked(i),
)
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.translation.replace(i, val.translation);
self.rotation.replace(i, val.rotation);
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.translation.replace_unchecked(i, val.translation);
self.rotation.replace_unchecked(i, val.rotation);
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
Isometry::from_parts(
self.translation.select(cond, other.translation),
self.rotation.select(cond, other.rotation),
)
}
}

View File

@ -3,34 +3,36 @@
mod op_macros;
mod abstract_rotation;
mod point;
mod point_alga;
mod point_alias;
mod point_construction;
mod point_conversion;
mod point_coordinates;
mod point_ops;
mod point_simba;
mod rotation;
mod rotation_alga; // FIXME: implement Rotation methods.
mod rotation_alias;
mod rotation_construction;
mod rotation_conversion;
mod rotation_ops;
mod rotation_simba; // FIXME: implement Rotation methods.
mod rotation_specialization;
mod quaternion;
mod quaternion_alga;
mod quaternion_construction;
mod quaternion_conversion;
mod quaternion_coordinates;
mod quaternion_ops;
mod quaternion_simba;
mod unit_complex;
mod unit_complex_alga;
mod unit_complex_construction;
mod unit_complex_conversion;
mod unit_complex_ops;
mod unit_complex_simba;
mod translation;
mod translation_alga;
@ -41,33 +43,35 @@ mod translation_coordinates;
mod translation_ops;
mod isometry;
mod isometry_alga;
mod isometry_alias;
mod isometry_construction;
mod isometry_conversion;
mod isometry_ops;
mod isometry_simba;
mod similarity;
mod similarity_alga;
mod similarity_alias;
mod similarity_construction;
mod similarity_conversion;
mod similarity_ops;
mod similarity_simba;
mod swizzle;
mod transform;
mod transform_alga;
mod transform_alias;
mod transform_construction;
mod transform_conversion;
mod transform_ops;
mod transform_simba;
mod reflection;
mod orthographic;
mod perspective;
pub use self::abstract_rotation::AbstractRotation;
pub use self::point::*;
pub use self::point_alias::*;

View File

@ -1,6 +1,5 @@
#![macro_use]
// FIXME: merge with `md_impl`.
/// Macro for the implementation of multiplication and division.
macro_rules! md_impl(
@ -88,7 +87,7 @@ macro_rules! md_assign_impl(
// Operator, operator method, and scalar bounds.
$Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*;
// Storage dimensions, and dimension bounds.
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),*
// [Optional] Extra allocator bounds.
$(where $ConstraintType: ty: $ConstraintBound: ident $(<$($ConstraintBoundParams: ty $( = $EqBound: ty )*),*>)* )*;
// Argument identifiers and types.
@ -116,7 +115,7 @@ macro_rules! md_assign_impl_all(
// Operator, operator method, and scalar bounds.
$Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*;
// Storage dimensions, and dimension bounds.
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),*
// [Optional] Extra allocator bounds.
$(where $ConstraintType: ty: $ConstraintBound: ident$(<$($ConstraintBoundParams: ty $( = $EqBound: ty )*),*>)* )*;
// Argument identifiers and types.
@ -126,14 +125,14 @@ macro_rules! md_assign_impl_all(
[ref] => $action_ref: expr;) => {
md_assign_impl!(
$Op, $op $(where N: $($ScalarBounds),*)*;
($R1, $C1),($R2, $C2) for $($Dims: $DimsBound $(<$($BoundParam),*>)*),+
($R1, $C1),($R2, $C2) for $($Dims: $DimsBound $(<$($BoundParam),*>)*),*
$(where $ConstraintType: $ConstraintBound $(<$($ConstraintBoundParams $( = $EqBound )*),*>)*)*;
$lhs: $Lhs, $rhs: $Rhs;
$action_val; );
md_assign_impl!(
$Op, $op $(where N: $($ScalarBounds),*)*;
($R1, $C1),($R2, $C2) for $($Dims: $DimsBound $(<$($BoundParam),*>)*),+
($R1, $C1),($R2, $C2) for $($Dims: $DimsBound $(<$($BoundParam),*>)*),*
$(where $ConstraintType: $ConstraintBound $(<$($ConstraintBoundParams $( = $EqBound )*),*>)*)*;
$lhs: $Lhs, $rhs: &'b $Rhs;
$action_ref; 'b);

View File

@ -7,7 +7,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use std::mem;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::base::dimension::U3;
use crate::base::helper;
@ -286,7 +286,7 @@ impl<N: RealField> Orthographic3<N> {
/// Retrieves the underlying homogeneous matrix.
/// Deprecated: Use [Orthographic3::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> Matrix4<N> {
self.matrix

View File

@ -8,7 +8,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use std::mem;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::base::dimension::U3;
use crate::base::helper;
@ -147,7 +147,7 @@ impl<N: RealField> Perspective3<N> {
/// Retrieves the underlying homogeneous matrix.
/// Deprecated: Use [Perspective3::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> Matrix4<N> {
self.matrix
@ -170,7 +170,8 @@ impl<N: RealField> Perspective3<N> {
pub fn znear(&self) -> N {
let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());
self.matrix[(2, 3)] / (ratio * crate::convert(2.0)) - self.matrix[(2, 3)] / crate::convert(2.0)
self.matrix[(2, 3)] / (ratio * crate::convert(2.0))
- self.matrix[(2, 3)] / crate::convert(2.0)
}
/// Gets the far plane offset of the view frustum.

View File

@ -1,83 +0,0 @@
use alga::general::{Field, JoinSemilattice, Lattice, MeetSemilattice, RealField};
use alga::linear::{AffineSpace, EuclideanSpace};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::Point;
impl<N: Scalar + Field, D: DimName> AffineSpace for Point<N, D>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, D>,
{
type Translation = VectorN<N, D>;
}
impl<N: RealField, D: DimName> EuclideanSpace for Point<N, D>
where DefaultAllocator: Allocator<N, D>
{
type Coordinates = VectorN<N, D>;
type RealField = N;
#[inline]
fn origin() -> Self {
Self::origin()
}
#[inline]
fn coordinates(&self) -> Self::Coordinates {
self.coords.clone()
}
#[inline]
fn from_coordinates(coords: Self::Coordinates) -> Self {
Self::from(coords)
}
#[inline]
fn scale_by(&self, n: N) -> Self {
self * n
}
}
/*
*
* Ordering
*
*/
impl<N, D: DimName> MeetSemilattice for Point<N, D>
where
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn meet(&self, other: &Self) -> Self {
Self::from(self.coords.meet(&other.coords))
}
}
impl<N, D: DimName> JoinSemilattice for Point<N, D>
where
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn join(&self, other: &Self) -> Self {
Self::from(self.coords.join(&other.coords))
}
}
impl<N, D: DimName> Lattice for Point<N, D>
where
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn meet_join(&self, other: &Self) -> (Self, Self) {
let (meet, join) = self.coords.meet_join(&other.coords);
(Self::from(meet), Self::from(join))
}
}

View File

@ -5,10 +5,10 @@ use num::{Bounded, One, Zero};
use rand::distributions::{Distribution, Standard};
use rand::Rng;
use alga::general::ClosedDiv;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1, U2, U3, U4, U5, U6};
use crate::base::{DefaultAllocator, Scalar, VectorN};
use simba::scalar::ClosedDiv;
use crate::geometry::Point;

View File

@ -1,5 +1,5 @@
use alga::general::{ClosedDiv, SubsetOf, SupersetOf};
use num::{One, Zero};
use simba::scalar::{ClosedDiv, SubsetOf, SupersetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
@ -44,7 +44,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &Point<N2, D>) -> Self {
fn from_superset_unchecked(m: &Point<N2, D>) -> Self {
Self::from(Matrix::from_superset_unchecked(&m.coords))
}
}
@ -71,10 +71,10 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(v: &VectorN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(v: &VectorN<N2, DimNameSum<D, U1>>) -> Self {
let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()].inlined_clone();
Self {
coords: crate::convert_unchecked(coords)
coords: crate::convert_unchecked(coords),
}
}
}
@ -142,13 +142,10 @@ where
}
impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Point<N, D>
where
DefaultAllocator: Allocator<N, D>,
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn from(coords: VectorN<N, D>) -> Self {
Point {
coords
}
Point { coords }
}
}

View File

@ -3,10 +3,12 @@ use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
use crate::base::allocator::{Allocator, SameShapeAllocator};
use crate::base::constraint::{AreMultipliable, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::base::constraint::{
AreMultipliable, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint,
};
use crate::base::dimension::{Dim, DimName, U1};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Matrix, Scalar, Vector, VectorSum};

View File

@ -0,0 +1,51 @@
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::Point;
impl<N: Scalar + SimdValue, D: DimName> SimdValue for Point<N, D>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
type Element = Point<N::Element, D>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
VectorN::splat(val.coords).into()
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
self.coords.extract(i).into()
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
self.coords.extract_unchecked(i).into()
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.coords.replace(i, val.coords)
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.coords.replace_unchecked(i, val.coords)
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
self.coords.select(cond, other.coords).into()
}
}

View File

@ -13,11 +13,12 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::RealField;
use simba::scalar::RealField;
use simba::simd::SimdRealField;
use crate::base::dimension::{U1, U3, U4};
use crate::base::storage::{CStride, RStride};
use crate::base::{Matrix3, Matrix4, MatrixSlice, MatrixSliceMut, Unit, Vector3, Vector4};
use crate::base::{Matrix3, Matrix4, MatrixSlice, MatrixSliceMut, Normed, Unit, Vector3, Vector4};
use crate::geometry::{Point3, Rotation};
@ -25,13 +26,13 @@ use crate::geometry::{Point3, Rotation};
/// that may be used as a rotation.
#[repr(C)]
#[derive(Debug)]
pub struct Quaternion<N: RealField> {
pub struct Quaternion<N: SimdRealField> {
/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.
pub coords: Vector4<N>,
}
#[cfg(feature = "abomonation-serialize")]
impl<N: RealField> Abomonation for Quaternion<N>
impl<N: SimdRealField> Abomonation for Quaternion<N>
where Vector4<N>: Abomonation
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
@ -47,9 +48,9 @@ where Vector4<N>: Abomonation
}
}
impl<N: RealField + Eq> Eq for Quaternion<N> {}
impl<N: SimdRealField + Eq> Eq for Quaternion<N> {}
impl<N: RealField> PartialEq for Quaternion<N> {
impl<N: SimdRealField> PartialEq for Quaternion<N> {
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
@ -57,15 +58,15 @@ impl<N: RealField> PartialEq for Quaternion<N> {
}
}
impl<N: RealField + hash::Hash> hash::Hash for Quaternion<N> {
impl<N: SimdRealField + hash::Hash> hash::Hash for Quaternion<N> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<N: RealField> Copy for Quaternion<N> {}
impl<N: SimdRealField> Copy for Quaternion<N> {}
impl<N: RealField> Clone for Quaternion<N> {
impl<N: SimdRealField> Clone for Quaternion<N> {
#[inline]
fn clone(&self) -> Self {
Self::from(self.coords.clone())
@ -73,7 +74,7 @@ impl<N: RealField> Clone for Quaternion<N> {
}
#[cfg(feature = "serde-serialize")]
impl<N: RealField> Serialize for Quaternion<N>
impl<N: SimdRealField> Serialize for Quaternion<N>
where Owned<N, U4>: Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
@ -83,7 +84,7 @@ where Owned<N, U4>: Serialize
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: RealField> Deserialize<'a> for Quaternion<N>
impl<'a, N: SimdRealField> Deserialize<'a> for Quaternion<N>
where Owned<N, U4>: Deserialize<'a>
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
@ -94,7 +95,7 @@ where Owned<N, U4>: Deserialize<'a>
}
}
impl<N: RealField> Quaternion<N> {
impl<N: SimdRealField> Quaternion<N> {
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
@ -146,36 +147,6 @@ impl<N: RealField> Quaternion<N> {
Self::from_parts(self.w, -self.imag())
}
/// Inverts this quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_some());
/// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());
///
/// //Non-invertible case
/// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Self> {
let mut res = Self::from(self.coords.clone_owned());
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Linear interpolation between two quaternion.
///
/// Computes `self * (1 - t) + other * t`.
@ -309,6 +280,38 @@ impl<N: RealField> Quaternion<N> {
pub fn dot(&self, rhs: &Self) -> N {
self.coords.dot(&rhs.coords)
}
}
impl<N: RealField> Quaternion<N> {
/// Inverts this quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_some());
/// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());
///
/// //Non-invertible case
/// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Self> {
let mut res = self.clone();
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Calculates the inner product (also known as the dot product).
/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel
@ -917,6 +920,30 @@ impl<N: RealField + fmt::Display> fmt::Display for Quaternion<N> {
/// A unit quaternions. May be used to represent a rotation.
pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
impl<N: SimdRealField> Normed for Quaternion<N> {
type Norm = N::SimdRealField;
#[inline]
fn norm(&self) -> N::SimdRealField {
self.coords.norm()
}
#[inline]
fn norm_squared(&self) -> N::SimdRealField {
self.coords.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.coords.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.coords.unscale_mut(n)
}
}
impl<N: RealField> UnitQuaternion<N> {
/// Moves this unit quaternion into one that owns its data.
#[inline]
@ -948,7 +975,7 @@ impl<N: RealField> UnitQuaternion<N> {
#[inline]
pub fn angle(&self) -> N {
let w = self.quaternion().scalar().abs();
self.quaternion().imag().norm().atan2(w) * crate::convert(2.0f64)
self.quaternion().imag().norm().atan2(w) * crate::convert(2.0f64)
}
/// The underlying quaternion.
@ -1029,7 +1056,7 @@ impl<N: RealField> UnitQuaternion<N> {
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self{
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
@ -1087,7 +1114,8 @@ impl<N: RealField> UnitQuaternion<N> {
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self {
self.try_slerp(other, t, N::default_epsilon()).expect("Quaternion slerp: ambiguous configuration.")
self.try_slerp(other, t, N::default_epsilon())
.expect("Quaternion slerp: ambiguous configuration.")
}
/// Computes the spherical linear interpolation between two unit quaternions or returns `None`
@ -1101,22 +1129,21 @@ impl<N: RealField> UnitQuaternion<N> {
/// * `epsilon`: the value below which the sinus of the angle separating both quaternion
/// must be to return `None`.
#[inline]
pub fn try_slerp(
&self,
other: &Self,
t: N,
epsilon: N,
) -> Option<Self>
{
pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self> {
let coords = if self.coords.dot(&other.coords) < N::zero() {
Unit::new_unchecked(self.coords)
.try_slerp(&Unit::new_unchecked(-other.coords), t, epsilon)
Unit::new_unchecked(self.coords).try_slerp(
&Unit::new_unchecked(-other.coords),
t,
epsilon,
)
} else {
Unit::new_unchecked(self.coords)
.try_slerp(&Unit::new_unchecked(other.coords), t, epsilon)
Unit::new_unchecked(self.coords).try_slerp(
&Unit::new_unchecked(other.coords),
t,
epsilon,
)
};
coords.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner())))
}

View File

@ -1,307 +0,0 @@
use num::Zero;
use alga::general::{
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, Id, Identity, TwoSidedInverse, Module,
Multiplicative, RealField,
};
use alga::linear::{
AffineTransformation, DirectIsometry, FiniteDimVectorSpace, Isometry, NormedSpace,
OrthogonalTransformation, ProjectiveTransformation, Rotation, Similarity, Transformation,
VectorSpace,
};
use crate::base::{Vector3, Vector4};
use crate::geometry::{Point3, Quaternion, UnitQuaternion};
impl<N: RealField> Identity<Multiplicative> for Quaternion<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField> Identity<Additive> for Quaternion<N> {
#[inline]
fn identity() -> Self {
Self::zero()
}
}
impl<N: RealField> AbstractMagma<Multiplicative> for Quaternion<N> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl<N: RealField> AbstractMagma<Additive> for Quaternion<N> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self + rhs
}
}
impl<N: RealField> TwoSidedInverse<Additive> for Quaternion<N> {
#[inline]
fn two_sided_inverse(&self) -> Self {
-self
}
}
macro_rules! impl_structures(
($Quaternion: ident; $($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField> $marker<$operator> for $Quaternion<N> { }
)*}
);
impl_structures!(
Quaternion;
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractSemigroup<Additive>,
AbstractQuasigroup<Additive>,
AbstractMonoid<Additive>,
AbstractLoop<Additive>,
AbstractGroup<Additive>,
AbstractGroupAbelian<Additive>
);
/*
*
* Vector space.
*
*/
impl<N: RealField> AbstractModule for Quaternion<N> {
type AbstractRing = N;
#[inline]
fn multiply_by(&self, n: N) -> Self {
self * n
}
}
impl<N: RealField> Module for Quaternion<N> {
type Ring = N;
}
impl<N: RealField> VectorSpace for Quaternion<N> {
type Field = N;
}
impl<N: RealField> FiniteDimVectorSpace for Quaternion<N> {
#[inline]
fn dimension() -> usize {
4
}
#[inline]
fn canonical_basis_element(i: usize) -> Self {
Self::from(Vector4::canonical_basis_element(i))
}
#[inline]
fn dot(&self, other: &Self) -> N {
self.coords.dot(&other.coords)
}
#[inline]
unsafe fn component_unchecked(&self, i: usize) -> &N {
self.coords.component_unchecked(i)
}
#[inline]
unsafe fn component_unchecked_mut(&mut self, i: usize) -> &mut N {
self.coords.component_unchecked_mut(i)
}
}
impl<N: RealField> NormedSpace for Quaternion<N> {
type RealField = N;
type ComplexField = N;
#[inline]
fn norm_squared(&self) -> N {
self.coords.norm_squared()
}
#[inline]
fn norm(&self) -> N {
self.as_vector().norm()
}
#[inline]
fn normalize(&self) -> Self {
let v = self.coords.normalize();
Self::from(v)
}
#[inline]
fn normalize_mut(&mut self) -> N {
self.coords.normalize_mut()
}
#[inline]
fn try_normalize(&self, min_norm: N) -> Option<Self> {
if let Some(v) = self.coords.try_normalize(min_norm) {
Some(Self::from(v))
} else {
None
}
}
#[inline]
fn try_normalize_mut(&mut self, min_norm: N) -> Option<N> {
self.coords.try_normalize_mut(min_norm)
}
}
/*
*
* Implementations for UnitQuaternion.
*
*/
impl<N: RealField> Identity<Multiplicative> for UnitQuaternion<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField> AbstractMagma<Multiplicative> for UnitQuaternion<N> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl<N: RealField> TwoSidedInverse<Multiplicative> for UnitQuaternion<N> {
#[inline]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl_structures!(
UnitQuaternion;
AbstractSemigroup<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
impl<N: RealField> Transformation<Point3<N>> for UnitQuaternion<N> {
#[inline]
fn transform_point(&self, pt: &Point3<N>) -> Point3<N> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &Vector3<N>) -> Vector3<N> {
self.transform_vector(v)
}
}
impl<N: RealField> ProjectiveTransformation<Point3<N>> for UnitQuaternion<N> {
#[inline]
fn inverse_transform_point(&self, pt: &Point3<N>) -> Point3<N> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &Vector3<N>) -> Vector3<N> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField> AffineTransformation<Point3<N>> for UnitQuaternion<N> {
type Rotation = Self;
type NonUniformScaling = Id;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Self, Id, Self) {
(Id::new(), self.clone(), Id::new(), Self::identity())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
r * self
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: RealField> Similarity<Point3<N>> for UnitQuaternion<N> {
type Scaling = Id;
#[inline]
fn translation(&self) -> Id {
Id::new()
}
#[inline]
fn rotation(&self) -> Self {
self.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField> $Trait<Point3<N>> for UnitQuaternion<N> { }
)*}
);
marker_impl!(Isometry, DirectIsometry, OrthogonalTransformation);
impl<N: RealField> Rotation<Point3<N>> for UnitQuaternion<N> {
#[inline]
fn powf(&self, n: N) -> Option<Self> {
Some(self.powf(n))
}
#[inline]
fn rotation_between(a: &Vector3<N>, b: &Vector3<N>) -> Option<Self> {
Self::rotation_between(a, b)
}
#[inline]
fn scaled_rotation_between(a: &Vector3<N>, b: &Vector3<N>, s: N) -> Option<Self> {
Self::scaled_rotation_between(a, b, s)
}
}

View File

@ -9,15 +9,16 @@ use num::{One, Zero};
use rand::distributions::{Distribution, OpenClosed01, Standard};
use rand::Rng;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Unit, Vector, Vector3, Vector4, Matrix3, Matrix4};
use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4};
use crate::SimdRealField;
use crate::geometry::{Quaternion, Rotation3, UnitQuaternion};
impl<N: RealField> Quaternion<N> {
impl<N: SimdRealField> Quaternion<N> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]
@ -77,17 +78,6 @@ impl<N: RealField> Quaternion<N> {
Self::from_parts(r, Vector3::zero())
}
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
// FIXME: take a reference to `axis`?
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
where SB: Storage<N, U3> {
let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * crate::convert(2.0f64));
rot.into_inner() * scale
}
/// The quaternion multiplicative identity.
///
/// # Example
@ -105,14 +95,28 @@ impl<N: RealField> Quaternion<N> {
}
}
impl<N: RealField> One for Quaternion<N> {
// FIXME: merge with the previous block.
impl<N: RealField> Quaternion<N> {
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
// FIXME: take a reference to `axis`?
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
where SB: Storage<N, U3> {
let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * crate::convert(2.0f64));
rot.into_inner() * scale
}
}
impl<N: SimdRealField> One for Quaternion<N> {
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N: RealField> Zero for Quaternion<N> {
impl<N: SimdRealField> Zero for Quaternion<N> {
#[inline]
fn zero() -> Self {
Self::from(Vector4::zero())
@ -124,7 +128,7 @@ impl<N: RealField> Zero for Quaternion<N> {
}
}
impl<N: RealField> Distribution<Quaternion<N>> for Standard
impl<N: SimdRealField> Distribution<Quaternion<N>> for Standard
where Standard: Distribution<N>
{
#[inline]
@ -134,7 +138,7 @@ where Standard: Distribution<N>
}
#[cfg(feature = "arbitrary")]
impl<N: RealField + Arbitrary> Arbitrary for Quaternion<N>
impl<N: SimdRealField + Arbitrary> Arbitrary for Quaternion<N>
where Owned<N, U4>: Send
{
#[inline]
@ -492,7 +496,7 @@ impl<N: RealField> UnitQuaternion<N> {
}
/// Deprecated: Use [UnitQuaternion::face_towards] instead.
#[deprecated(note="renamed to `face_towards`")]
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frames<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where
SB: Storage<N, U3>,

View File

@ -1,7 +1,7 @@
use num::Zero;
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::SimdRealField;
#[cfg(feature = "mint")]
use mint;
@ -9,8 +9,8 @@ use mint;
use crate::base::dimension::U3;
use crate::base::{Matrix3, Matrix4, Vector4};
use crate::geometry::{
Isometry, Point3, Quaternion, Rotation, Rotation3, Similarity, SuperTCategoryOf, TAffine,
Transform, Translation, UnitQuaternion,
AbstractRotation, Isometry, Quaternion, Rotation, Rotation3, Similarity, SuperTCategoryOf,
TAffine, Transform, Translation, UnitQuaternion,
};
/*
@ -34,8 +34,8 @@ use crate::geometry::{
impl<N1, N2> SubsetOf<Quaternion<N2>> for Quaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> Quaternion<N2> {
@ -48,7 +48,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(q: &Quaternion<N2>) -> Self {
fn from_superset_unchecked(q: &Quaternion<N2>) -> Self {
Self {
coords: q.coords.to_subset_unchecked(),
}
@ -57,8 +57,8 @@ where
impl<N1, N2> SubsetOf<UnitQuaternion<N2>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitQuaternion<N2> {
@ -71,7 +71,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(uq: &UnitQuaternion<N2>) -> Self {
fn from_superset_unchecked(uq: &UnitQuaternion<N2>) -> Self {
Self::new_unchecked(crate::convert_ref_unchecked(uq.as_ref()))
}
}
@ -93,7 +93,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Rotation3<N2>) -> Self {
fn from_superset_unchecked(rot: &Rotation3<N2>) -> Self {
let q = UnitQuaternion::<N2>::from_rotation_matrix(rot);
crate::convert_unchecked(q)
}
@ -103,7 +103,7 @@ impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
R: AbstractRotation<N2, U3> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, U3, R> {
@ -116,7 +116,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U3, R>) -> Self {
fn from_superset_unchecked(iso: &Isometry<N2, U3, R>) -> Self {
crate::convert_ref_unchecked(&iso.rotation)
}
}
@ -125,7 +125,7 @@ impl<N1, N2, R> SubsetOf<Similarity<N2, U3, R>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
R: AbstractRotation<N2, U3> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, U3, R> {
@ -138,7 +138,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U3, R>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, U3, R>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
@ -160,7 +160,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, U3, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, U3, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -177,7 +177,7 @@ impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix4<N2>> for Un
}
#[inline]
unsafe fn from_superset_unchecked(m: &Matrix4<N2>) -> Self {
fn from_superset_unchecked(m: &Matrix4<N2>) -> Self {
let rot: Rotation3<N1> = crate::convert_ref_unchecked(m);
Self::from_rotation_matrix(&rot)
}
@ -246,7 +246,7 @@ impl<N: RealField> From<UnitQuaternion<N>> for Matrix3<N> {
}
}
impl<N: RealField> From<Vector4<N>> for Quaternion<N> {
impl<N: SimdRealField> From<Vector4<N>> for Quaternion<N> {
#[inline]
fn from(coords: Vector4<N>) -> Self {
Self { coords }

View File

@ -1,13 +1,13 @@
use std::mem;
use std::ops::{Deref, DerefMut};
use alga::general::RealField;
use simba::simd::SimdRealField;
use crate::base::coordinates::IJKW;
use crate::geometry::Quaternion;
impl<N: RealField> Deref for Quaternion<N> {
impl<N: SimdRealField> Deref for Quaternion<N> {
type Target = IJKW<N>;
#[inline]
@ -16,7 +16,7 @@ impl<N: RealField> Deref for Quaternion<N> {
}
}
impl<N: RealField> DerefMut for Quaternion<N> {
impl<N: SimdRealField> DerefMut for Quaternion<N> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { mem::transmute(self) }

View File

@ -54,16 +54,15 @@ use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
use alga::general::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{U1, U3, U4};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Unit, Vector, Vector3};
use crate::SimdRealField;
use crate::geometry::{Point3, Quaternion, Rotation, UnitQuaternion};
impl<N: RealField> Index<usize> for Quaternion<N> {
impl<N: SimdRealField> Index<usize> for Quaternion<N> {
type Output = N;
#[inline]
@ -72,7 +71,7 @@ impl<N: RealField> Index<usize> for Quaternion<N> {
}
}
impl<N: RealField> IndexMut<usize> for Quaternion<N> {
impl<N: SimdRealField> IndexMut<usize> for Quaternion<N> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut N {
&mut self.coords[i]
@ -85,7 +84,7 @@ macro_rules! quaternion_op_impl(
$(for $Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty $(=> $VDimA: ty, $VDimB: ty)*;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: RealField $(, $Storage: $StoragesBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
impl<$($lives ,)* N: SimdRealField $(, $Storage: $StoragesBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where DefaultAllocator: Allocator<N, $LhsRDim, $LhsCDim> +
Allocator<N, $RhsRDim, $RhsCDim> {
type Output = $Result;
@ -121,11 +120,11 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords + rhs.coords);
);
Add, add;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords + rhs.coords);
);
// Quaternion - Quaternion
quaternion_op_impl!(
@ -150,11 +149,11 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords - rhs.coords);
);
Sub, sub;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords - rhs.coords);
);
// Quaternion × Quaternion
quaternion_op_impl!(
@ -183,11 +182,11 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
&self * &rhs;
);
Mul, mul;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
&self * &rhs;
);
// UnitQuaternion × UnitQuaternion
quaternion_op_impl!(
@ -212,11 +211,11 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self * &rhs;
);
Mul, mul;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self * &rhs;
);
// UnitQuaternion ÷ UnitQuaternion
quaternion_op_impl!(
@ -241,11 +240,11 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self / &rhs;
);
Div, div;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self / &rhs;
);
// UnitQuaternion × Rotation
quaternion_op_impl!(
@ -274,12 +273,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
Mul, mul;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
// UnitQuaternion ÷ Rotation
quaternion_op_impl!(
@ -308,12 +307,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Div, div;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
Div, div;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
// Rotation × UnitQuaternion
quaternion_op_impl!(
@ -342,12 +341,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs;
);
Mul, mul;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs;
);
// Rotation ÷ UnitQuaternion
quaternion_op_impl!(
@ -376,12 +375,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Div, div;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs;
);
Div, div;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs;
);
// UnitQuaternion × Vector
quaternion_op_impl!(
@ -415,12 +414,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
&self * &rhs;
);
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
&self * &rhs;
);
// UnitQuaternion × Point
quaternion_op_impl!(
@ -448,12 +447,12 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1);
self: UnitQuaternion<N>, rhs: Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from(self * rhs.coords);
);
Mul, mul;
(U4, U1), (U3, U1);
self: UnitQuaternion<N>, rhs: Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from(self * rhs.coords);
);
// UnitQuaternion × Unit<Vector>
quaternion_op_impl!(
@ -481,16 +480,16 @@ quaternion_op_impl!(
'b);
quaternion_op_impl!(
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.into_inner());
);
Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.into_inner());
);
macro_rules! scalar_op_impl(
($($Op: ident, $op: ident, $OpAssign: ident, $op_assign: ident);* $(;)*) => {$(
impl<N: RealField> $Op<N> for Quaternion<N> {
impl<N: SimdRealField> $Op<N> for Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
@ -499,7 +498,7 @@ macro_rules! scalar_op_impl(
}
}
impl<'a, N: RealField> $Op<N> for &'a Quaternion<N> {
impl<'a, N: SimdRealField> $Op<N> for &'a Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
@ -508,7 +507,7 @@ macro_rules! scalar_op_impl(
}
}
impl<N: RealField> $OpAssign<N> for Quaternion<N> {
impl<N: SimdRealField> $OpAssign<N> for Quaternion<N> {
#[inline]
fn $op_assign(&mut self, n: N) {
@ -547,7 +546,7 @@ macro_rules! left_scalar_mul_impl(
left_scalar_mul_impl!(f32, f64);
impl<N: RealField> Neg for Quaternion<N> {
impl<N: SimdRealField> Neg for Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
@ -556,7 +555,7 @@ impl<N: RealField> Neg for Quaternion<N> {
}
}
impl<'a, N: RealField> Neg for &'a Quaternion<N> {
impl<'a, N: SimdRealField> Neg for &'a Quaternion<N> {
type Output = Quaternion<N>;
#[inline]
@ -570,7 +569,7 @@ macro_rules! quaternion_op_impl(
($LhsRDim: ident, $LhsCDim: ident), ($RhsRDim: ident, $RhsCDim: ident);
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty $(=> $VDimA: ty, $VDimB: ty)*;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: RealField> $OpAssign<$Rhs> for $Lhs
impl<$($lives ,)* N: SimdRealField> $OpAssign<$Rhs> for $Lhs
where DefaultAllocator: Allocator<N, $LhsRDim, $LhsCDim> +
Allocator<N, $RhsRDim, $RhsCDim> {

View File

@ -0,0 +1,47 @@
use simba::simd::SimdValue;
use crate::base::Vector4;
use crate::geometry::Quaternion;
use crate::{RealField, Scalar};
impl<N: RealField> SimdValue for Quaternion<N>
where N::Element: Scalar
{
type Element = Quaternion<N::Element>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
Vector4::splat(val.coords).into()
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
self.coords.extract(i).into()
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
self.coords.extract_unchecked(i).into()
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.coords.replace(i, val.coords)
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.coords.replace_unchecked(i, val.coords)
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
self.coords.select(cond, other.coords).into()
}
}

View File

@ -1,9 +1,9 @@
use alga::general::ComplexField;
use crate::base::allocator::Allocator;
use crate::base::constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
use crate::base::{DefaultAllocator, Matrix, Scalar, Unit, Vector};
use crate::dimension::{Dim, DimName, U1};
use crate::storage::{Storage, StorageMut};
use simba::scalar::ComplexField;
use crate::geometry::Point;
@ -27,10 +27,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
/// Creates a new reflection wrt. the plane orthogonal to the given axis and that contains the
/// point `pt`.
pub fn new_containing_point(
axis: Unit<Vector<N, D, S>>,
pt: &Point<N, D>,
) -> Self
pub fn new_containing_point(axis: Unit<Vector<N, D, S>>, pt: &Point<N, D>) -> Self
where
D: DimName,
DefaultAllocator: Allocator<N, D>,
@ -64,9 +61,9 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
// FIXME: naming convention: reflect_to, reflect_assign ?
/// Applies the reflection to the columns of `rhs`.
pub fn reflect_with_sign<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>, sign: N)
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
for i in 0..rhs.ncols() {
// NOTE: we borrow the column twice here. First it is borrowed immutably for the

View File

@ -14,7 +14,7 @@ use crate::base::storage::Owned;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
@ -175,7 +175,7 @@ where DefaultAllocator: Allocator<N, D, D>
/// Unwraps the underlying matrix.
/// Deprecated: Use [Rotation::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> MatrixN<N, D> {
self.matrix

View File

@ -1,276 +0,0 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::{
self, AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
ProjectiveTransformation, Similarity, Transformation,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Point, Rotation};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName> Identity<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName> TwoSidedInverse<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.transpose()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: RealField, D: DimName> AbstractMagma<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName> $marker<$operator> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
type Rotation = Self;
type NonUniformScaling = Id;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Self, Id, Self) {
(Id::new(), self.clone(), Id::new(), Self::identity())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
r * self
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Id {
Id::new()
}
#[inline]
fn rotation(&self) -> Self {
self.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField, D: DimName> $Trait<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> { }
)*}
);
marker_impl!(Isometry, DirectIsometry, OrthogonalTransformation);
/// Subgroups of the n-dimensional rotation group `SO(n)`.
impl<N: RealField, D: DimName> linear::Rotation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn powf(&self, _: N) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
#[inline]
fn rotation_between(_: &VectorN<N, D>, _: &VectorN<N, D>) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
#[inline]
fn scaled_rotation_between(_: &VectorN<N, D>, _: &VectorN<N, D>, _: N) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
}
/*
impl<N: RealField> Matrix for Rotation<N> {
type Field = N;
type Row = Matrix<N>;
type Column = Matrix<N>;
type Transpose = Self;
#[inline]
fn nrows(&self) -> usize {
self.submatrix.nrows()
}
#[inline]
fn ncolumns(&self) -> usize {
self.submatrix.ncolumns()
}
#[inline]
fn row(&self, i: usize) -> Self::Row {
self.submatrix.row(i)
}
#[inline]
fn column(&self, i: usize) -> Self::Column {
self.submatrix.column(i)
}
#[inline]
fn get(&self, i: usize, j: usize) -> Self::Field {
self.submatrix[(i, j)]
}
#[inline]
unsafe fn get_unchecked(&self, i: usize, j: usize) -> Self::Field {
self.submatrix.at_fast(i, j)
}
#[inline]
fn transpose(&self) -> Self::Transpose {
Rotation::from_matrix_unchecked(self.submatrix.transpose())
}
}
impl<N: RealField> SquareMatrix for Rotation<N> {
type Vector = Matrix<N>;
#[inline]
fn diagonal(&self) -> Self::Coordinates {
self.submatrix.diagonal()
}
#[inline]
fn determinant(&self) -> Self::Field {
crate::one()
}
#[inline]
fn try_inverse(&self) -> Option<Self> {
Some(::transpose(self))
}
#[inline]
fn try_inverse_mut(&mut self) -> bool {
self.transpose_mut();
true
}
#[inline]
fn transpose_mut(&mut self) {
self.submatrix.transpose_mut()
}
}
impl<N: RealField> InversibleSquareMatrix for Rotation<N> { }
*/

View File

@ -1,6 +1,6 @@
use num::{One, Zero};
use alga::general::{ClosedAdd, ClosedMul};
use simba::scalar::{ClosedAdd, ClosedMul};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;

View File

@ -1,7 +1,6 @@
use num::Zero;
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
#[cfg(feature = "mint")]
use mint;
@ -11,8 +10,8 @@ use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, Matrix2, Matrix3, Matrix4, MatrixN};
use crate::geometry::{
Isometry, Point, Rotation, Rotation2, Rotation3, Similarity, SuperTCategoryOf, TAffine,
Transform, Translation, UnitComplex, UnitQuaternion,
AbstractRotation, Isometry, Rotation, Rotation2, Rotation3, Similarity, SuperTCategoryOf,
TAffine, Transform, Translation, UnitComplex, UnitQuaternion,
};
/*
@ -47,7 +46,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Rotation<N2, D>) -> Self {
fn from_superset_unchecked(rot: &Rotation<N2, D>) -> Self {
Rotation::from_matrix_unchecked(rot.matrix().to_subset_unchecked())
}
}
@ -69,7 +68,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(q: &UnitQuaternion<N2>) -> Self {
fn from_superset_unchecked(q: &UnitQuaternion<N2>) -> Self {
let q: UnitQuaternion<N1> = crate::convert_ref_unchecked(q);
q.to_rotation_matrix()
}
@ -92,7 +91,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(q: &UnitComplex<N2>) -> Self {
fn from_superset_unchecked(q: &UnitComplex<N2>) -> Self {
let q: UnitComplex<N1> = crate::convert_ref_unchecked(q);
q.to_rotation_matrix()
}
@ -102,7 +101,7 @@ impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
{
#[inline]
@ -116,7 +115,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
crate::convert_ref_unchecked(&iso.rotation)
}
}
@ -125,7 +124,7 @@ impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
{
#[inline]
@ -139,7 +138,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
crate::convert_ref_unchecked(&sim.isometry.rotation)
}
}
@ -168,7 +167,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -204,7 +203,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let r = m.fixed_slice::<D, D>(0, 0);
Self::from_matrix_unchecked(crate::convert_unchecked(r.into_owned()))
}
@ -219,7 +218,7 @@ impl<N: RealField> From<mint::EulerAngles<N, mint::IntraXYZ>> for Rotation3<N> {
impl<N: RealField> From<Rotation2<N>> for Matrix3<N> {
#[inline]
fn from(q: Rotation2<N>) ->Self {
fn from(q: Rotation2<N>) -> Self {
q.to_homogeneous()
}
}

View File

@ -20,7 +20,7 @@
use num::{One, Zero};
use std::ops::{Div, DivAssign, Index, Mul, MulAssign};
use alga::general::{ClosedAdd, ClosedMul};
use simba::scalar::{ClosedAdd, ClosedMul};
use crate::base::allocator::Allocator;
use crate::base::constraint::{AreMultipliable, ShapeConstraint};

54
src/geometry/rotation_simba.rs Executable file
View File

@ -0,0 +1,54 @@
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, MatrixN, Scalar};
use crate::geometry::Rotation;
impl<N, D> SimdValue for Rotation<N, D>
where
N: Scalar + SimdValue,
D: DimName,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
{
type Element = Rotation<N::Element, D>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
Rotation::from_matrix_unchecked(MatrixN::splat(val.into_inner()))
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
Rotation::from_matrix_unchecked(self.matrix().extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
Rotation::from_matrix_unchecked(self.matrix().extract_unchecked(i))
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.matrix_mut_unchecked().replace(i, val.into_inner())
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.matrix_mut_unchecked()
.replace_unchecked(i, val.into_inner())
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
Rotation::from_matrix_unchecked(self.into_inner().select(cond, other.into_inner()))
}
}

View File

@ -3,10 +3,10 @@ use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use alga::general::RealField;
use num::Zero;
use rand::distributions::{Distribution, OpenClosed01, Standard};
use rand::Rng;
use simba::scalar::RealField;
use std::ops::Neg;
use crate::base::dimension::{U1, U2, U3};
@ -77,10 +77,8 @@ impl<N: RealField> Rotation2<N> {
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).perp(&m.column(0)) +
rot.column(1).perp(&m.column(1));
let denom = rot.column(0).dot(&m.column(0)) +
rot.column(1).dot(&m.column(1));
let axis = rot.column(0).perp(&m.column(0)) + rot.column(1).perp(&m.column(1));
let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1));
let angle = axis / (denom.abs() + N::default_epsilon());
if angle.abs() > eps {
@ -192,7 +190,6 @@ impl<N: RealField> Rotation2<N> {
other * self.inverse()
}
/// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
/// computations might cause the matrix from progressively not being orthonormal anymore.
#[inline]
@ -203,7 +200,6 @@ impl<N: RealField> Rotation2<N> {
*self = Self::from_matrix_eps(self.matrix(), N::default_epsilon(), 0, c.into())
}
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
/// of `self` multiplied by `n`.
///
@ -314,12 +310,12 @@ impl<N: RealField> Rotation3<N> {
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).cross(&m.column(0)) +
rot.column(1).cross(&m.column(1)) +
rot.column(2).cross(&m.column(2));
let denom = rot.column(0).dot(&m.column(0)) +
rot.column(1).dot(&m.column(1)) +
rot.column(2).dot(&m.column(2));
let axis = rot.column(0).cross(&m.column(0))
+ rot.column(1).cross(&m.column(1))
+ rot.column(2).cross(&m.column(2));
let denom = rot.column(0).dot(&m.column(0))
+ rot.column(1).dot(&m.column(1))
+ rot.column(2).dot(&m.column(2));
let axisangle = axis / (denom.abs() + N::default_epsilon());
@ -528,7 +524,7 @@ impl<N: RealField> Rotation3<N> {
}
/// Deprecated: Use [Rotation3::face_towards] instead.
#[deprecated(note="renamed to `face_towards`")]
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frames<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where
SB: Storage<N, U3>,

View File

@ -10,14 +10,13 @@ use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{RealField, SubsetOf};
use alga::linear::Rotation;
use simba::scalar::{RealField, SubsetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{DefaultAllocator, MatrixN, VectorN};
use crate::geometry::{Isometry, Point, Translation};
use crate::geometry::{AbstractRotation, Isometry, Point, Translation};
/// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
#[repr(C)]
@ -25,21 +24,17 @@ use crate::geometry::{Isometry, Point, Translation};
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "N: Serialize,
serde(bound(serialize = "N: Serialize,
R: Serialize,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize"
))
Owned<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "N: Deserialize<'de>,
serde(bound(deserialize = "N: Deserialize<'de>,
R: Deserialize<'de>,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'de>"
))
Owned<N, D>: Deserialize<'de>"))
)]
pub struct Similarity<N: RealField, D: DimName, R>
where DefaultAllocator: Allocator<N, D>
@ -80,13 +75,14 @@ where
}
}
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Similarity<N, D, R>
impl<N: RealField, D: DimName + Copy, R: AbstractRotation<N, D> + Copy> Copy for Similarity<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{}
{
}
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Similarity<N, D, R>
impl<N: RealField, D: DimName, R: AbstractRotation<N, D> + Clone> Clone for Similarity<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
@ -97,17 +93,12 @@ where DefaultAllocator: Allocator<N, D>
impl<N: RealField, D: DimName, R> Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
/// Creates a new similarity from its rotational and translational parts.
#[inline]
pub fn from_parts(
translation: Translation<N, D>,
rotation: R,
scaling: N,
) -> Self
{
pub fn from_parts(translation: Translation<N, D>, rotation: R, scaling: N) -> Self {
Self::from_isometry(Isometry::from_parts(translation, rotation), scaling)
}
@ -119,10 +110,7 @@ where
"The scaling factor must not be zero."
);
Self {
isometry: isometry,
scaling: scaling,
}
Self { isometry, scaling }
}
/// Creates a new similarity that applies only a scaling factor.
@ -351,13 +339,14 @@ where DefaultAllocator: Allocator<N, D>
impl<N: RealField, D: DimName, R> Eq for Similarity<N, D, R>
where
R: Rotation<Point<N, D>> + Eq,
R: AbstractRotation<N, D> + Eq,
DefaultAllocator: Allocator<N, D>,
{}
{
}
impl<N: RealField, D: DimName, R> PartialEq for Similarity<N, D, R>
where
R: Rotation<Point<N, D>> + PartialEq,
R: AbstractRotation<N, D> + PartialEq,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
@ -368,7 +357,7 @@ where
impl<N: RealField, D: DimName, R> AbsDiffEq for Similarity<N, D, R>
where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
@ -388,7 +377,7 @@ where
impl<N: RealField, D: DimName, R> RelativeEq for Similarity<N, D, R>
where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
@ -415,7 +404,7 @@ where
impl<N: RealField, D: DimName, R> UlpsEq for Similarity<N, D, R>
where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
R: AbstractRotation<N, D> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
@ -439,7 +428,7 @@ where
impl<N, D: DimName, R> fmt::Display for Similarity<N, D, R>
where
N: RealField + fmt::Display,
R: Rotation<Point<N, D>> + fmt::Display,
R: AbstractRotation<N, D> + fmt::Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

View File

@ -1,189 +0,0 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::Similarity as AlgaSimilarity;
use alga::linear::{AffineTransformation, ProjectiveTransformation, Rotation, Transformation};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Point, Similarity, Translation};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName, R> $marker<$operator> for Similarity<N, D, R>
where R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type NonUniformScaling = N;
type Rotation = R;
type Translation = Translation<N, D>;
#[inline]
fn decompose(&self) -> (Translation<N, D>, R, N, R) {
(
self.isometry.translation.clone(),
self.isometry.rotation.clone(),
self.scaling(),
R::identity(),
)
}
#[inline]
fn append_translation(&self, t: &Self::Translation) -> Self {
t * self
}
#[inline]
fn prepend_translation(&self, t: &Self::Translation) -> Self {
self * t
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
Similarity::from_isometry(self.isometry.append_rotation(r), self.scaling())
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self {
self.append_scaling(*s)
}
#[inline]
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self {
self.prepend_scaling(*s)
}
#[inline]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &Point<N, D>) -> Option<Self> {
let mut res = self.clone();
res.append_rotation_wrt_point_mut(r, p);
Some(res)
}
}
impl<N: RealField, D: DimName, R> AlgaSimilarity<Point<N, D>> for Similarity<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type Scaling = N;
#[inline]
fn translation(&self) -> Translation<N, D> {
self.isometry.translation()
}
#[inline]
fn rotation(&self) -> R {
self.isometry.rotation()
}
#[inline]
fn scaling(&self) -> N {
self.scaling()
}
}

View File

@ -7,21 +7,20 @@ use num::One;
use rand::distributions::{Distribution, Standard};
use rand::Rng;
use alga::general::RealField;
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U2, U3};
use crate::base::{DefaultAllocator, Vector2, Vector3};
use crate::geometry::{
Isometry, Point, Point3, Rotation2, Rotation3, Similarity, Translation, UnitComplex,
UnitQuaternion,
AbstractRotation, Isometry, Point, Point3, Rotation2, Rotation3, Similarity, Translation,
UnitComplex, UnitQuaternion,
};
impl<N: RealField, D: DimName, R> Similarity<N, D, R>
where
R: AlgaRotation<Point<N, D>>,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
/// Creates a new identity similarity.
@ -47,7 +46,7 @@ where
impl<N: RealField, D: DimName, R> One for Similarity<N, D, R>
where
R: AlgaRotation<Point<N, D>>,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
/// Creates a new identity similarity.
@ -59,7 +58,7 @@ where
impl<N: RealField, D: DimName, R> Distribution<Similarity<N, D, R>> for Standard
where
R: AlgaRotation<Point<N, D>>,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N> + Distribution<R>,
{
@ -76,7 +75,7 @@ where
impl<N: RealField, D: DimName, R> Similarity<N, D, R>
where
R: AlgaRotation<Point<N, D>>,
R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
/// The similarity that applies the scaling factor `scaling`, followed by the rotation `r` with
@ -105,7 +104,7 @@ where
impl<N, D: DimName, R> Arbitrary for Similarity<N, D, R>
where
N: RealField + Arbitrary + Send,
R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
R: AbstractRotation<N, D> + Arbitrary + Send,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Send,
{

View File

@ -1,11 +1,12 @@
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN};
use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
use crate::geometry::{
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
};
/*
* This file provides the following conversions:
@ -20,8 +21,8 @@ impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<
where
N1: RealField + SubsetOf<N2>,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
R2: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
@ -36,7 +37,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
Similarity::from_isometry(
sim.isometry.to_subset_unchecked(),
sim.scaling().to_subset_unchecked(),
@ -49,7 +50,7 @@ where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>>
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .determinant()
@ -73,7 +74,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -82,7 +83,7 @@ impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Similarity<N1, D
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>>
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .determinant()
@ -137,7 +138,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let mut mm = m.clone_owned();
let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
@ -159,7 +160,11 @@ where
vector: crate::convert_unchecked(t),
};
Self::from_parts(t, crate::convert_unchecked(mm), crate::convert_unchecked(scale))
Self::from_parts(
t,
crate::convert_unchecked(mm),
crate::convert_unchecked(scale),
)
}
}

View File

@ -1,13 +1,15 @@
use num::{One, Zero};
use std::ops::{Div, DivAssign, Mul, MulAssign};
use alga::general::RealField;
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U1, U3, U4};
use crate::base::{DefaultAllocator, VectorN};
use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::{Isometry, Point, Rotation, Similarity, Translation, UnitQuaternion};
use crate::geometry::{
AbstractRotation, Isometry, Point, Rotation, Similarity, Translation, UnitQuaternion,
};
// FIXME: there are several cloning of rotations that we could probably get rid of (but we didn't
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
@ -67,7 +69,7 @@ macro_rules! similarity_binop_impl(
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N: RealField, D: DimName, R> $Op<$Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
type Output = $Output;
@ -114,7 +116,7 @@ macro_rules! similarity_binop_assign_impl_all(
[val] => $action_val: expr;
[ref] => $action_ref: expr;) => {
impl<N: RealField, D: DimName, R> $OpAssign<$Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: $Rhs) {
@ -123,7 +125,7 @@ macro_rules! similarity_binop_assign_impl_all(
}
impl<'b, N: RealField, D: DimName, R> $OpAssign<&'b $Rhs> for $Lhs
where R: AlgaRotation<Point<N, D>>,
where R: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: &'b $Rhs) {
@ -211,51 +213,38 @@ similarity_binop_assign_impl_all!(
// Similarity ×= R
// Similarity ÷= R
similarity_binop_assign_impl_all!(
MulAssign, mul_assign;
self: Similarity<N, D, R>, rhs: R;
md_assign_impl_all!(
MulAssign, mul_assign where N: RealField;
(D, U1), (D, D) for D: DimName;
self: Similarity<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
[val] => self.isometry.rotation *= rhs;
[ref] => self.isometry.rotation *= rhs.clone();
);
similarity_binop_assign_impl_all!(
DivAssign, div_assign;
self: Similarity<N, D, R>, rhs: R;
md_assign_impl_all!(
DivAssign, div_assign where N: RealField;
(D, U1), (D, D) for D: DimName;
self: Similarity<N, D, Rotation<N, D>>, rhs: Rotation<N, D>;
// FIXME: don't invert explicitly?
[val] => *self *= rhs.two_sided_inverse();
[ref] => *self *= rhs.two_sided_inverse();
[val] => *self *= rhs.inverse();
[ref] => *self *= rhs.inverse();
);
// Similarity × R
// Similarity ÷ R
similarity_binop_impl_all!(
Mul, mul;
self: Similarity<N, D, R>, rhs: R, Output = Similarity<N, D, R>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
md_assign_impl_all!(
MulAssign, mul_assign where N: RealField;
(U3, U3), (U3, U3) for;
self: Similarity<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
[val] => self.isometry.rotation *= rhs;
[ref] => self.isometry.rotation *= rhs.clone();
);
similarity_binop_impl_all!(
Div, div;
self: Similarity<N, D, R>, rhs: R, Output = Similarity<N, D, R>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
md_assign_impl_all!(
DivAssign, div_assign where N: RealField;
(U3, U3), (U3, U3) for;
self: Similarity<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>;
// FIXME: don't invert explicitly?
[val] => *self *= rhs.inverse();
[ref] => *self *= rhs.inverse();
);
// Similarity × Isometry
@ -427,6 +416,24 @@ macro_rules! similarity_from_composition_impl_all(
}
);
// Similarity × Rotation
similarity_from_composition_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName;
self: Similarity<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
Output = Similarity<N, D, Rotation<N, D>>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
);
// Rotation × Similarity
similarity_from_composition_impl_all!(
Mul, mul;
@ -439,6 +446,24 @@ similarity_from_composition_impl_all!(
[ref ref] => Similarity::from_isometry(self * &right.isometry, right.scaling());
);
// Similarity ÷ Rotation
similarity_from_composition_impl_all!(
Div, div;
(D, D), (D, U1) for D: DimName;
self: Similarity<N, D, Rotation<N, D>>, rhs: Rotation<N, D>,
Output = Similarity<N, D, Rotation<N, D>>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
);
// Rotation ÷ Similarity
similarity_from_composition_impl_all!(
Div, div;
@ -452,6 +477,24 @@ similarity_from_composition_impl_all!(
[ref ref] => self * right.inverse();
);
// Similarity × UnitQuaternion
similarity_from_composition_impl_all!(
Mul, mul;
(U4, U1), (U3, U1);
self: Similarity<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
Output = Similarity<N, U3, UnitQuaternion<N>>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry * rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry * rhs, self.scaling());
);
// UnitQuaternion × Similarity
similarity_from_composition_impl_all!(
Mul, mul;
@ -464,6 +507,24 @@ similarity_from_composition_impl_all!(
[ref ref] => Similarity::from_isometry(self * &right.isometry, right.scaling());
);
// Similarity ÷ Rotation
similarity_from_composition_impl_all!(
Div, div;
(U4, U1), (U3, U1);
self: Similarity<N, U3, UnitQuaternion<N>>, rhs: UnitQuaternion<N>,
Output = Similarity<N, U3, UnitQuaternion<N>>;
[val val] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref val] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
[val ref] => {
let scaling = self.scaling();
Similarity::from_isometry(self.isometry / rhs, scaling)
};
[ref ref] => Similarity::from_isometry(&self.isometry / rhs, self.scaling());
);
// UnitQuaternion ÷ Similarity
similarity_from_composition_impl_all!(
Div, div;

View File

@ -0,0 +1,65 @@
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, Scalar};
use crate::RealField;
use crate::geometry::{AbstractRotation, Isometry, Similarity};
impl<N: RealField, D: DimName, R> SimdValue for Similarity<N, D, R>
where
N::Element: Scalar,
R: SimdValue<SimdBool = N::SimdBool> + AbstractRotation<N, D>,
R::Element: AbstractRotation<N, D>,
DefaultAllocator: Allocator<N, D>,
{
type Element = Similarity<N::Element, D, R::Element>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
let scaling = N::splat(val.scaling());
Similarity::from_isometry(Isometry::splat(val.isometry), scaling)
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
Similarity::from_isometry(self.isometry.extract(i), self.scaling().extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
Similarity::from_isometry(
self.isometry.extract_unchecked(i),
self.scaling().extract_unchecked(i),
)
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
let mut s = self.scaling();
s.replace(i, val.scaling());
self.set_scaling(s);
self.isometry.replace(i, val.isometry);
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
let mut s = self.scaling();
s.replace_unchecked(i, val.scaling());
self.set_scaling(s);
self.isometry.replace_unchecked(i, val.isometry);
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
let scaling = self.scaling().select(cond, other.scaling());
Similarity::from_isometry(self.isometry.select(cond, other.isometry), scaling)
}
}

View File

@ -6,7 +6,7 @@ use std::marker::PhantomData;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use alga::general::{RealField, TwoSidedInverse};
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
@ -259,7 +259,7 @@ where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
/// Retrieves the underlying matrix.
/// Deprecated: Use [Transform::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> MatrixN<N, DimNameSum<D, U1>> {
self.matrix
@ -484,8 +484,9 @@ where
}
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
where
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
@ -495,7 +496,7 @@ where C: SubTCategoryOf<TProjective>,
/// the point.
#[inline]
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.two_sided_inverse() * pt
self.clone().inverse() * pt
}
/// Transform the given vector by the inverse of this transformation.
@ -503,7 +504,7 @@ where C: SubTCategoryOf<TProjective>,
/// the vector.
#[inline]
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.two_sided_inverse() * v
self.clone().inverse() * v
}
}

View File

@ -1,146 +0,0 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::{ProjectiveTransformation, Transformation};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Point, SubTCategoryOf, TCategory, TProjective, Transform};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimNameAdd<U1>, C> TwoSidedInverse<Multiplicative> for Transform<N, D, C>
where
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.clone().inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
macro_rules! impl_inversible_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
);
impl_inversible_multiplicative_structures!(
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
where
N: RealField,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
where
N: RealField,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
// FIXME: we need to implement an SVD for this.
//
// impl<N, D: DimNameAdd<U1>, C> AffineTransformation<Point<N, D>> for Transform<N, D, C>
// where N: RealField,
// C: SubTCategoryOf<TAffine>,
// DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
// Allocator<N, D, D> +
// Allocator<N, D> {
// type PreRotation = Rotation<N, D>;
// type NonUniformScaling = VectorN<N, D>;
// type PostRotation = Rotation<N, D>;
// type Translation = Translation<N, D>;
//
// #[inline]
// fn decompose(&self) -> (Self::Translation, Self::PostRotation, Self::NonUniformScaling, Self::PreRotation) {
// unimplemented!()
// }
// }

View File

@ -1,6 +1,6 @@
use num::One;
use alga::general::RealField;
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};

View File

@ -1,4 +1,4 @@
use alga::general::{RealField, SubsetOf};
use simba::scalar::{RealField, SubsetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
@ -29,7 +29,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C2>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, D, C2>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -56,7 +56,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
Self::from_matrix_unchecked(crate::convert_ref_unchecked(m))
}
}

View File

@ -1,7 +1,7 @@
use num::{One, Zero};
use std::ops::{Div, DivAssign, Index, IndexMut, Mul, MulAssign};
use alga::general::{ClosedAdd, ClosedMul, RealField, SubsetOf};
use simba::scalar::{ClosedAdd, ClosedMul, RealField, SubsetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1, U3, U4};

55
src/geometry/transform_simba.rs Executable file
View File

@ -0,0 +1,55 @@
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar};
use crate::RealField;
use crate::geometry::{TCategory, Transform};
impl<N: RealField, D: DimNameAdd<U1>, C> SimdValue for Transform<N, D, C>
where
N::Element: Scalar,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N::Element, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
type Element = Transform<N::Element, D, C>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
Transform::from_matrix_unchecked(MatrixN::splat(val.into_inner()))
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
Transform::from_matrix_unchecked(self.matrix().extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
Transform::from_matrix_unchecked(self.matrix().extract_unchecked(i))
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.matrix_mut_unchecked().replace(i, val.into_inner())
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.matrix_mut_unchecked()
.replace_unchecked(i, val.into_inner())
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
Transform::from_matrix_unchecked(self.into_inner().select(cond, other.into_inner()))
}
}

View File

@ -11,7 +11,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{ClosedAdd, ClosedNeg, ClosedSub, RealField};
use simba::scalar::{ClosedAdd, ClosedNeg, ClosedSub, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
@ -45,7 +45,8 @@ impl<N: Scalar + Copy, D: DimName> Copy for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{}
{
}
impl<N: Scalar, D: DimName> Clone for Translation<N, D>
where
@ -302,7 +303,7 @@ where
* Display
*
*/
impl<N: RealField + fmt::Display, D: DimName> fmt::Display for Translation<N, D>
impl<N: Scalar + fmt::Display, D: DimName> fmt::Display for Translation<N, D>
where DefaultAllocator: Allocator<N, D> + Allocator<usize, D>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

View File

@ -1,199 +1,52 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::Translation as AlgaTranslation;
use alga::linear::{
AffineTransformation, DirectIsometry, Isometry, ProjectiveTransformation, Similarity,
Transformation,
};
use simba::simd::SimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::Scalar;
use crate::geometry::{Point, Translation};
use crate::geometry::Translation;
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName> Identity<Multiplicative> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
impl<N: Scalar + SimdValue, D: DimName> SimdValue for Translation<N, D>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
type Element = Translation<N::Element, D>;
type SimdBool = N::SimdBool;
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName> TwoSidedInverse<Multiplicative> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimName> AbstractMagma<Multiplicative> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName> $marker<$operator> for Translation<N, D>
where DefaultAllocator: Allocator<N, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
v.clone()
}
}
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
v.clone()
}
}
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
type Rotation = Id;
type NonUniformScaling = Id;
type Translation = Self;
#[inline]
fn decompose(&self) -> (Self, Id, Id, Id) {
(self.clone(), Id::new(), Id::new(), Id::new())
}
#[inline]
fn append_translation(&self, t: &Self::Translation) -> Self {
t * self
}
#[inline]
fn prepend_translation(&self, t: &Self::Translation) -> Self {
self * t
}
#[inline]
fn append_rotation(&self, _: &Self::Rotation) -> Self {
self.clone()
}
#[inline]
fn prepend_rotation(&self, _: &Self::Rotation) -> Self {
self.clone()
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Self {
self.clone()
}
#[inline]
fn rotation(&self) -> Id {
Id::new()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField, D: DimName> $Trait<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D> { }
)*}
);
marker_impl!(Isometry, DirectIsometry);
/// Subgroups of the n-dimensional translation group `T(n)`.
impl<N: RealField, D: DimName> AlgaTranslation<Point<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn to_vector(&self) -> VectorN<N, D> {
self.vector.clone()
}
#[inline]
fn from_vector(v: VectorN<N, D>) -> Option<Self> {
Some(Self::from(v))
}
#[inline]
fn powf(&self, n: N) -> Option<Self> {
Some(Self::from(&self.vector * n))
}
#[inline]
fn translation_between(a: &Point<N, D>, b: &Point<N, D>) -> Option<Self> {
Some(Self::from(b - a))
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
VectorN::splat(val.vector).into()
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
self.vector.extract(i).into()
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
self.vector.extract_unchecked(i).into()
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.vector.replace(i, val.vector)
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.vector.replace_unchecked(i, val.vector)
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
self.vector.select(cond, other.vector).into()
}
}

View File

@ -7,7 +7,7 @@ use num::{One, Zero};
use rand::distributions::{Distribution, Standard};
use rand::Rng;
use alga::general::ClosedAdd;
use simba::scalar::ClosedAdd;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U1, U2, U3, U4, U5, U6};

View File

@ -1,13 +1,14 @@
use num::{One, Zero};
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
use crate::geometry::{
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
};
/*
* This file provides the following conversions:
@ -37,7 +38,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Translation<N2, D>) -> Self {
fn from_superset_unchecked(rot: &Translation<N2, D>) -> Self {
Translation {
vector: rot.vector.to_subset_unchecked(),
}
@ -48,7 +49,7 @@ impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
R: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
@ -62,7 +63,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
Self::from_superset_unchecked(&iso.translation)
}
}
@ -71,7 +72,7 @@ impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
R: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
@ -85,7 +86,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
Self::from_superset_unchecked(&sim.isometry.translation)
}
}
@ -112,7 +113,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -145,7 +146,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let t = m.fixed_slice::<D, U1>(0, D::dim());
Self {
vector: crate::convert_unchecked(t.into_owned()),

View File

@ -1,6 +1,6 @@
use std::ops::{Div, DivAssign, Mul, MulAssign};
use alga::general::{ClosedAdd, ClosedSub};
use simba::scalar::{ClosedAdd, ClosedSub};
use crate::base::allocator::{Allocator, SameShapeAllocator};
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};

View File

@ -2,13 +2,44 @@ use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num_complex::Complex;
use std::fmt;
use alga::general::RealField;
use crate::base::{Matrix2, Matrix3, Unit, Vector1, Vector2};
use crate::geometry::{Rotation2, Point2};
use crate::base::{Matrix2, Matrix3, Normed, Unit, Vector1, Vector2};
use crate::geometry::{Point2, Rotation2};
use simba::scalar::RealField;
use simba::simd::SimdRealField;
/// A complex number with a norm equal to 1.
pub type UnitComplex<N> = Unit<Complex<N>>;
impl<N: SimdRealField> Normed for Complex<N> {
type Norm = N::SimdRealField;
#[inline]
fn norm(&self) -> N::SimdRealField {
// We don't use `.norm_sqr()` because it requires
// some very strong Num trait requirements.
(self.re * self.re + self.im * self.im).simd_sqrt()
}
#[inline]
fn norm_squared(&self) -> N::SimdRealField {
// We don't use `.norm_sqr()` because it requires
// some very strong Num trait requirements.
self.re * self.re + self.im * self.im
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.re *= n;
self.im *= n;
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.re /= n;
self.im /= n;
}
}
impl<N: RealField> UnitComplex<N> {
/// The rotation angle in `]-pi; pi]` of this unit complex number.
///

View File

@ -1,180 +0,0 @@
use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::{
AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
ProjectiveTransformation, Rotation, Similarity, Transformation,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::U2;
use crate::base::{DefaultAllocator, Vector2};
use crate::geometry::{Point2, UnitComplex};
/*
*
* Implementations for UnitComplex.
*
*/
impl<N: RealField> Identity<Multiplicative> for UnitComplex<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField> AbstractMagma<Multiplicative> for UnitComplex<N> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl<N: RealField> TwoSidedInverse<Multiplicative> for UnitComplex<N> {
#[inline]
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
macro_rules! impl_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField> $marker<$operator> for UnitComplex<N> {
}
)*}
);
impl_structures!(
AbstractSemigroup<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
impl<N: RealField> Transformation<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2>
{
#[inline]
fn transform_point(&self, pt: &Point2<N>) -> Point2<N> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &Vector2<N>) -> Vector2<N> {
self.transform_vector(v)
}
}
impl<N: RealField> ProjectiveTransformation<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2>
{
#[inline]
fn inverse_transform_point(&self, pt: &Point2<N>) -> Point2<N> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &Vector2<N>) -> Vector2<N> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField> AffineTransformation<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2>
{
type Rotation = Self;
type NonUniformScaling = Id;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Self, Id, Self) {
(Id::new(), self.clone(), Id::new(), Self::identity())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
r * self
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: RealField> Similarity<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2>
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Id {
Id::new()
}
#[inline]
fn rotation(&self) -> Self {
self.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField> $Trait<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2> { }
)*}
);
marker_impl!(Isometry, DirectIsometry, OrthogonalTransformation);
impl<N: RealField> Rotation<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2>
{
#[inline]
fn powf(&self, n: N) -> Option<Self> {
Some(self.powf(n))
}
#[inline]
fn rotation_between(a: &Vector2<N>, b: &Vector2<N>) -> Option<Self> {
Some(Self::rotation_between(a, b))
}
#[inline]
fn scaled_rotation_between(a: &Vector2<N>, b: &Vector2<N>, s: N) -> Option<Self> {
Some(Self::scaled_rotation_between(a, b, s))
}
}

View File

@ -6,11 +6,11 @@ use num_complex::Complex;
use rand::distributions::{Distribution, OpenClosed01, Standard};
use rand::Rng;
use alga::general::RealField;
use crate::base::dimension::{U1, U2};
use crate::base::storage::Storage;
use crate::base::{Unit, Vector, Matrix2};
use crate::base::{Matrix2, Unit, Vector};
use crate::geometry::{Rotation2, UnitComplex};
use simba::scalar::RealField;
impl<N: RealField> UnitComplex<N> {
/// The unit complex number multiplicative identity.

View File

@ -1,14 +1,13 @@
use num::Zero;
use num_complex::Complex;
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation as AlgaRotation;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use crate::base::dimension::U2;
use crate::base::{Matrix2, Matrix3};
use crate::geometry::{
Isometry, Point2, Rotation2, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
UnitComplex
AbstractRotation, Isometry, Rotation2, Similarity, SuperTCategoryOf, TAffine, Transform,
Translation, UnitComplex,
};
/*
@ -42,7 +41,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(uq: &UnitComplex<N2>) -> Self {
fn from_superset_unchecked(uq: &UnitComplex<N2>) -> Self {
Self::new_unchecked(crate::convert_ref_unchecked(uq.as_ref()))
}
}
@ -64,7 +63,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Rotation2<N2>) -> Self {
fn from_superset_unchecked(rot: &Rotation2<N2>) -> Self {
let q = UnitComplex::<N2>::from_rotation_matrix(rot);
crate::convert_unchecked(q)
}
@ -74,7 +73,7 @@ impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
R: AbstractRotation<N2, U2> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, U2, R> {
@ -87,7 +86,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self {
fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self {
crate::convert_ref_unchecked(&iso.rotation)
}
}
@ -96,7 +95,7 @@ impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for UnitComplex<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
R: AbstractRotation<N2, U2> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, U2, R> {
@ -109,7 +108,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self {
fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
@ -131,7 +130,7 @@ where
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, U2, C>) -> Self {
fn from_superset_unchecked(t: &Transform<N2, U2, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
@ -148,13 +147,12 @@ impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix3<N2>> for Un
}
#[inline]
unsafe fn from_superset_unchecked(m: &Matrix3<N2>) -> Self {
fn from_superset_unchecked(m: &Matrix3<N2>) -> Self {
let rot: Rotation2<N1> = crate::convert_ref_unchecked(m);
Self::from_rotation_matrix(&rot)
}
}
impl<N: RealField> From<UnitComplex<N>> for Rotation2<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Self {

View File

@ -1,11 +1,11 @@
use std::ops::{Div, DivAssign, Mul, MulAssign};
use alga::general::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{U1, U2};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Unit, Vector, Vector2};
use crate::geometry::{Isometry, Point2, Rotation, Similarity, Translation, UnitComplex};
use simba::scalar::RealField;
/*
* This file provides:

View File

@ -0,0 +1,50 @@
use num_complex::Complex;
use simba::simd::SimdValue;
use std::ops::Deref;
use crate::base::{Scalar, Unit};
use crate::geometry::UnitComplex;
use crate::RealField;
impl<N: RealField> SimdValue for UnitComplex<N>
where N::Element: Scalar
{
type Element = UnitComplex<N::Element>;
type SimdBool = N::SimdBool;
#[inline]
fn lanes() -> usize {
N::lanes()
}
#[inline]
fn splat(val: Self::Element) -> Self {
Unit::new_unchecked(Complex::splat(val.into_inner()))
}
#[inline]
fn extract(&self, i: usize) -> Self::Element {
Unit::new_unchecked(self.deref().extract(i))
}
#[inline]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element {
Unit::new_unchecked(self.deref().extract_unchecked(i))
}
#[inline]
fn replace(&mut self, i: usize, val: Self::Element) {
self.as_mut_unchecked().replace(i, val.into_inner())
}
#[inline]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element) {
self.as_mut_unchecked()
.replace_unchecked(i, val.into_inner())
}
#[inline]
fn select(self, cond: Self::SimdBool, other: Self) -> Self {
Unit::new_unchecked(self.into_inner().select(cond, other.into_inner()))
}
}

View File

@ -68,8 +68,6 @@ an optimized set of tools for computer graphics and physics. Those features incl
* 3D projections for computer graphics: `Perspective3`, `Orthographic3`.
* Matrix factorizations: `Cholesky`, `QR`, `LU`, `FullPivLU`, `SVD`, `Schur`, `Hessenberg`, `SymmetricEigen`.
* Insertion and removal of rows of columns of a matrix.
* Implements traits from the [alga](https://crates.io/crates/alga) crate for
generic programming.
*/
// #![feature(plugin)]
@ -81,7 +79,7 @@ an optimized set of tools for computer graphics and physics. Those features incl
#![deny(non_upper_case_globals)]
#![deny(unused_qualifications)]
#![deny(unused_results)]
#![deny(missing_docs)]
#![allow(missing_docs)] // XXX: deny that
#![doc(
html_favicon_url = "https://nalgebra.org/img/favicon.ico",
html_root_url = "https://nalgebra.org/rustdoc"
@ -106,18 +104,11 @@ extern crate mint;
#[macro_use]
extern crate approx;
extern crate generic_array;
#[cfg(feature = "std")]
extern crate matrixmultiply;
extern crate num_complex;
extern crate num_rational;
extern crate num_traits as num;
extern crate rand;
#[cfg(feature = "std")]
extern crate rand_distr;
extern crate typenum;
extern crate alga;
#[cfg(all(feature = "alloc", not(feature = "std")))]
extern crate alloc;
@ -152,35 +143,17 @@ pub use crate::sparse::*;
)]
pub use base as core;
use simba::scalar::SupersetOf;
use std::cmp::{self, Ordering, PartialOrd};
use alga::general::{
Additive, AdditiveGroup, Identity, JoinSemilattice, Lattice, MeetSemilattice, Multiplicative,
SupersetOf, TwoSidedInverse,
};
use alga::linear::SquareMatrix as AlgaSquareMatrix;
use alga::linear::{EuclideanSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace};
use num::Signed;
use num::{One, Signed, Zero};
#[allow(deprecated)]
pub use alga::general::Real;
pub use alga::general::{ComplexField, Id, RealField};
pub use alga::simd::{SimdComplexField, SimdRealField};
use base::allocator::Allocator;
pub use num_complex::Complex;
/*
*
* Multiplicative identity.
*
*/
/// Gets the ubiquitous multiplicative identity element.
///
/// Same as `Id::new()`.
#[deprecated(note = "use `Id::new()` instead.")]
#[inline]
pub fn id() -> Id {
Id::new()
}
pub use simba::scalar::{
ClosedAdd, ClosedDiv, ClosedMul, ClosedSub, ComplexField, Field, RealField,
};
pub use simba::simd::{SimdBool, SimdComplexField, SimdRealField};
/// Gets the multiplicative identity element.
///
@ -189,8 +162,8 @@ pub fn id() -> Id {
/// * [`origin`](../nalgebra/fn.origin.html)
/// * [`zero`](fn.zero.html)
#[inline]
pub fn one<T: Identity<Multiplicative>>() -> T {
T::identity()
pub fn one<T: One>() -> T {
T::one()
}
/// Gets the additive identity element.
@ -200,36 +173,8 @@ pub fn one<T: Identity<Multiplicative>>() -> T {
/// * [`one`](fn.one.html)
/// * [`origin`](../nalgebra/fn.origin.html)
#[inline]
pub fn zero<T: Identity<Additive>>() -> T {
T::identity()
}
/// Gets the origin of the given point.
///
/// # See also:
///
/// * [`one`](fn.one.html)
/// * [`zero`](fn.zero.html)
///
/// # Deprecated
/// Use [Point::origin] instead.
///
/// Or, use [EuclideanSpace::origin](https://docs.rs/alga/0.7.2/alga/linear/trait.EuclideanSpace.html#tymethod.origin).
#[deprecated(note = "use `Point::origin` instead")]
#[inline]
pub fn origin<P: EuclideanSpace>() -> P {
P::origin()
}
/*
*
* Dimension
*
*/
/// The dimension of the given algebraic entity seen as a vector space.
#[inline]
pub fn dimension<V: FiniteDimVectorSpace>() -> usize {
V::dimension()
pub fn zero<T: Zero>() -> T {
T::zero()
}
/*
@ -245,7 +190,7 @@ pub fn dimension<V: FiniteDimVectorSpace>() -> usize {
/// The range must not be empty.
#[inline]
pub fn wrap<T>(mut val: T, min: T, max: T) -> T
where T: Copy + PartialOrd + AdditiveGroup {
where T: Copy + PartialOrd + ClosedAdd + ClosedSub {
assert!(min < max, "Invalid wrapping bounds.");
let width = max - min;
@ -310,23 +255,23 @@ pub fn abs<T: Signed>(a: &T) -> T {
a.abs()
}
/// Returns the infimum of `a` and `b`.
#[inline]
pub fn inf<T: MeetSemilattice>(a: &T, b: &T) -> T {
a.meet(b)
}
/// Returns the supremum of `a` and `b`.
#[inline]
pub fn sup<T: JoinSemilattice>(a: &T, b: &T) -> T {
a.join(b)
}
/// Returns simultaneously the infimum and supremum of `a` and `b`.
#[inline]
pub fn inf_sup<T: Lattice>(a: &T, b: &T) -> (T, T) {
a.meet_join(b)
}
///// Returns the infimum of `a` and `b`.
//#[inline]
//pub fn inf<T: MeetSemilattice>(a: &T, b: &T) -> T {
// a.meet(b)
//}
//
///// Returns the supremum of `a` and `b`.
//#[inline]
//pub fn sup<T: JoinSemilattice>(a: &T, b: &T) -> T {
// a.join(b)
//}
//
///// Returns simultaneously the infimum and supremum of `a` and `b`.
//#[inline]
//pub fn inf_sup<T: Lattice>(a: &T, b: &T) -> (T, T) {
// a.meet_join(b)
//}
/// Compare `a` and `b` using a partial ordering relation.
#[inline]
@ -414,175 +359,6 @@ pub fn partial_sort2<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<(&'a T, &'
}
}
/*
* Inverse
*/
/// Tries to gets an inverted copy of a square matrix.
///
/// # See also:
///
/// * [`inverse`](fn.inverse.html)
#[deprecated(note = "use the `.try_inverse()` method instead")]
#[inline]
pub fn try_inverse<M: AlgaSquareMatrix>(m: &M) -> Option<M> {
m.try_inverse()
}
/// Computes the multiplicative inverse of an (always invertible) algebraic entity.
///
/// # See also:
///
/// * [`try_inverse`](fn.try_inverse.html)
#[deprecated(note = "use the `.inverse()` method instead")]
#[inline]
pub fn inverse<M: TwoSidedInverse<Multiplicative>>(m: &M) -> M {
m.two_sided_inverse()
}
/*
* Inner vector space
*/
/// Computes the dot product of two vectors.
///
/// ## Deprecated
/// Use these methods instead:
/// - [Matrix::dot]
/// - [Quaternion::dot]
///
/// Or, use [FiniteDimVectorSpace::dot](https://docs.rs/alga/0.7.2/alga/linear/trait.FiniteDimVectorSpace.html#tymethod.dot).
#[deprecated(note = "use `Matrix::dot` or `Quaternion::dot` instead")]
#[inline]
pub fn dot<V: FiniteDimVectorSpace>(a: &V, b: &V) -> V::Field {
a.dot(b)
}
/// Computes the smallest angle between two vectors.
///
/// ## Deprecated
/// Use [Matrix::angle] instead.
///
/// Or, use [InnerSpace::angle](https://docs.rs/alga/0.7.2/alga/linear/trait.InnerSpace.html#method.angle).
#[deprecated(note = "use `Matrix::angle` instead")]
#[inline]
pub fn angle<V: InnerSpace>(a: &V, b: &V) -> V::RealField {
a.angle(b)
}
/*
* Normed space
*/
/// Computes the L2 (Euclidean) norm of a vector.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm_squared`](fn.norm_squared.html)
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::norm]
/// * [Quaternion::norm]
///
/// Or, use [NormedSpace::norm](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.norm).
#[deprecated(note = "use `Matrix::norm` or `Quaternion::norm` instead")]
#[inline]
pub fn norm<V: NormedSpace>(v: &V) -> V::RealField {
v.norm()
}
/// Computes the squared L2 (Euclidean) norm of the vector `v`.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm`](fn.norm.html)
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::norm_squared]
/// * [Quaternion::norm_squared]
///
/// Or, use [NormedSpace::norm_squared](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.norm_squared).
#[deprecated(note = "use `Matrix::norm_squared` or `Quaternion::norm_squared` instead")]
#[inline]
pub fn norm_squared<V: NormedSpace>(v: &V) -> V::RealField {
v.norm_squared()
}
/// A synonym for [`norm`](fn.norm.html), aka length.
///
/// # See also:
///
/// * [`magnitude_squared`](fn.magnitude_squared.html)
/// * [`norm`](fn.norm.html)
/// * [`norm_squared`](fn.norm_squared.html)
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::magnitude]
/// * [Quaternion::magnitude]
///
/// Or, use [NormedSpace::norm](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.norm).
#[deprecated(note = "use `Matrix::magnitude` or `Quaternion::magnitude` instead")]
#[inline]
pub fn magnitude<V: NormedSpace>(v: &V) -> V::RealField {
v.norm()
}
/// A synonym for [`norm_squared`](fn.norm_squared.html),
/// aka length squared.
///
/// # See also:
///
/// * [`magnitude`](fn.magnitude.html)
/// * [`norm`](fn.norm.html)
/// * [`norm_squared`](fn.norm_squared.html)
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::magnitude_squared]
/// * [Quaternion::magnitude_squared]
///
/// Or, use [NormedSpace::norm_squared](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.norm_squared).
#[deprecated(note = "use `Matrix::magnitude_squared` or `Quaternion::magnitude_squared` instead")]
#[inline]
pub fn magnitude_squared<V: NormedSpace>(v: &V) -> V::RealField {
v.norm_squared()
}
/// Computes the normalized version of the vector `v`.
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::normalize]
/// * [Quaternion::normalize]
///
/// Or, use [NormedSpace::normalize](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.normalize).
#[deprecated(note = "use `Matrix::normalize` or `Quaternion::normalize` instead")]
#[inline]
pub fn normalize<V: NormedSpace>(v: &V) -> V {
v.normalize()
}
/// Computes the normalized version of the vector `v` or returns `None` if its norm is smaller than `min_norm`.
///
/// # Deprecated
/// Use these methods instead:
/// * [Matrix::try_normalize]
/// * [Quaternion::try_normalize]
///
/// Or, use [NormedSpace::try_normalize](https://docs.rs/alga/0.7.2/alga/linear/trait.NormedSpace.html#tymethod.try_normalize).
#[deprecated(note = "use `Matrix::try_normalize` or `Quaternion::try_normalize` instead")]
#[inline]
pub fn try_normalize<V: NormedSpace>(v: &V, min_norm: V::RealField) -> Option<V> {
v.try_normalize(min_norm)
}
/*
*
* Point operations.
@ -595,8 +371,9 @@ pub fn try_normalize<V: NormedSpace>(v: &V, min_norm: V::RealField) -> Option<V>
/// * [distance](fn.distance.html)
/// * [distance_squared](fn.distance_squared.html)
#[inline]
pub fn center<P: EuclideanSpace>(p1: &P, p2: &P) -> P {
P::from_coordinates((p1.coordinates() + p2.coordinates()) * convert(0.5))
pub fn center<N: SimdComplexField, D: DimName>(p1: &Point<N, D>, p2: &Point<N, D>) -> Point<N, D>
where DefaultAllocator: Allocator<N, D> {
((&p1.coords + &p2.coords) * convert::<_, N>(0.5)).into()
}
/// The distance between two points.
@ -606,8 +383,14 @@ pub fn center<P: EuclideanSpace>(p1: &P, p2: &P) -> P {
/// * [center](fn.center.html)
/// * [distance_squared](fn.distance_squared.html)
#[inline]
pub fn distance<P: EuclideanSpace>(p1: &P, p2: &P) -> P::RealField {
(p2.coordinates() - p1.coordinates()).norm()
pub fn distance<N: SimdComplexField, D: DimName>(
p1: &Point<N, D>,
p2: &Point<N, D>,
) -> N::SimdRealField
where
DefaultAllocator: Allocator<N, D>,
{
(&p2.coords - &p1.coords).norm()
}
/// The squared distance between two points.
@ -617,8 +400,14 @@ pub fn distance<P: EuclideanSpace>(p1: &P, p2: &P) -> P::RealField {
/// * [center](fn.center.html)
/// * [distance](fn.distance.html)
#[inline]
pub fn distance_squared<P: EuclideanSpace>(p1: &P, p2: &P) -> P::RealField {
(p2.coordinates() - p1.coordinates()).norm_squared()
pub fn distance_squared<N: SimdComplexField, D: DimName>(
p1: &Point<N, D>,
p2: &Point<N, D>,
) -> N::SimdRealField
where
DefaultAllocator: Allocator<N, D>,
{
(&p2.coords - &p1.coords).norm_squared()
}
/*
@ -683,7 +472,7 @@ pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool {
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline]
pub unsafe fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
pub fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
t.to_subset_unchecked()
}
@ -726,6 +515,6 @@ pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> {
/// * [try_convert](fn.try_convert.html)
/// * [try_convert_ref](fn.try_convert_ref.html)
#[inline]
pub unsafe fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
pub fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
t.to_subset_unchecked()
}

View File

@ -1,6 +1,6 @@
//! Functions for balancing a matrix.
use alga::general::RealField;
use simba::scalar::RealField;
use std::ops::{DivAssign, MulAssign};
use crate::allocator::Allocator;

View File

@ -1,11 +1,11 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::geometry::Reflection;
use crate::linalg::householder;
@ -14,27 +14,23 @@ use crate::linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DimMinimum<R, C>: DimSub<U1>,
serde(bound(serialize = "DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Serialize,
VectorN<N, DimMinimum<R, C>>: Serialize,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Serialize"
))
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DimMinimum<R, C>: DimSub<U1>,
serde(bound(deserialize = "DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Deserialize<'de>"
))
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Bidiagonal<N: ComplexField, R: DimMin<C>, C: Dim>
@ -63,7 +59,8 @@ where
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
{}
{
}
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C>
where
@ -174,11 +171,9 @@ where
MatrixN<N, DimMinimum<R, C>>,
MatrixMN<N, DimMinimum<R, C>, C>,
)
where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>
+ Allocator<N, R, DimMinimum<R, C>>
+ Allocator<N, DimMinimum<R, C>, C>,
{
+ Allocator<N, DimMinimum<R, C>, C> {
// FIXME: optimize by calling a reallocator.
(self.u(), self.d(), self.v_t())
}
@ -186,9 +181,7 @@ where
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>>
where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
{
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> {
let (nrows, ncols) = self.uv.data.shape();
let d = nrows.min(ncols);
@ -266,13 +259,13 @@ where
/// The diagonal part of this decomposed matrix.
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> {
where DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> {
self.diagonal.map(|e| e.modulus())
}
/// The off-diagonal part of this decomposed matrix.
pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>>
where DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>> {
where DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>> {
self.off_diagonal.map(|e| e.modulus())
}

View File

@ -2,12 +2,12 @@
use serde::{Deserialize, Serialize};
use num::One;
use alga::general::ComplexField;
use simba::scalar::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, Dynamic, U1};
use crate::storage::{Storage, StorageMut};
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
@ -24,8 +24,7 @@ use crate::storage::{Storage, StorageMut};
)]
#[derive(Clone, Debug)]
pub struct Cholesky<N: ComplexField, D: Dim>
where
DefaultAllocator: Allocator<N, D, D>,
where DefaultAllocator: Allocator<N, D, D>
{
chol: MatrixN<N, D>,
}
@ -38,8 +37,7 @@ where
}
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
where DefaultAllocator: Allocator<N, D, D>
{
/// Attempts to compute the Cholesky decomposition of `matrix`.
///
@ -176,22 +174,38 @@ where
let mut col = col.into_owned();
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
let n = col.nrows();
assert_eq!(n, self.chol.nrows() + 1, "The new column must have the size of the factored matrix plus one.");
assert_eq!(
n,
self.chol.nrows() + 1,
"The new column must have the size of the factored matrix plus one."
);
assert!(j < n, "j needs to be within the bound of the new matrix.");
// loads the data into a new matrix with an additional jth row/column
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.add(U1), self.chol.data.shape().1.add(U1)) };
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j + 1..).copy_from(&self.chol.slice_range(..j, j..));
chol.slice_range_mut(j + 1.., ..j).copy_from(&self.chol.slice_range(j.., ..j));
chol.slice_range_mut(j + 1.., j + 1..).copy_from(&self.chol.slice_range(j.., j..));
let mut chol = unsafe {
Matrix::new_uninitialized_generic(
self.chol.data.shape().0.add(U1),
self.chol.data.shape().1.add(U1),
)
};
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j + 1..)
.copy_from(&self.chol.slice_range(..j, j..));
chol.slice_range_mut(j + 1.., ..j)
.copy_from(&self.chol.slice_range(j.., ..j));
chol.slice_range_mut(j + 1.., j + 1..)
.copy_from(&self.chol.slice_range(j.., j..));
// update the jth row
let top_left_corner = self.chol.slice_range(..j, ..j);
let col_j = col[j];
let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..);
assert!(top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint), "Cholesky::insert_column : Unable to solve lower triangular system!");
assert!(
top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint),
"Cholesky::insert_column : Unable to solve lower triangular system!"
);
new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j));
@ -202,36 +216,51 @@ where
// update the jth column
let bottom_left_corner = self.chol.slice_range(j.., ..j);
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
new_colj.gemm(-N::one() / center_element, &bottom_left_corner, &new_rowj_adjoint, N::one() / center_element);
new_colj.gemm(
-N::one() / center_element,
&bottom_left_corner,
&new_rowj_adjoint,
N::one() / center_element,
);
chol.slice_range_mut(j + 1.., j).copy_from(&new_colj);
// update the bottom right corner
let mut bottom_right_corner = chol.slice_range_mut(j + 1.., j + 1..);
Self::xx_rank_one_update(&mut bottom_right_corner, &mut new_colj, -N::RealField::one());
Self::xx_rank_one_update(
&mut bottom_right_corner,
&mut new_colj,
-N::RealField::one(),
);
Cholesky { chol }
}
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
/// Since the matrix is square, the `j`th row will also be removed.
pub fn remove_column(
&self,
j: usize,
) -> Cholesky<N, DimDiff<D, U1>>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>, DimDiff<D, U1>> + Allocator<N, D>
pub fn remove_column(&self, j: usize) -> Cholesky<N, DimDiff<D, U1>>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>, DimDiff<D, U1>> + Allocator<N, D>,
{
let n = self.chol.nrows();
assert!(n > 0, "The matrix needs at least one column.");
assert!(j < n, "j needs to be within the bound of the matrix.");
// loads the data into a new matrix except for the jth row/column
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.sub(U1), self.chol.data.shape().1.sub(U1)) };
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j..).copy_from(&self.chol.slice_range(..j, j + 1..));
chol.slice_range_mut(j.., ..j).copy_from(&self.chol.slice_range(j + 1.., ..j));
chol.slice_range_mut(j.., j..).copy_from(&self.chol.slice_range(j + 1.., j + 1..));
let mut chol = unsafe {
Matrix::new_uninitialized_generic(
self.chol.data.shape().0.sub(U1),
self.chol.data.shape().1.sub(U1),
)
};
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j..)
.copy_from(&self.chol.slice_range(..j, j + 1..));
chol.slice_range_mut(j.., ..j)
.copy_from(&self.chol.slice_range(j + 1.., ..j));
chol.slice_range_mut(j.., j..)
.copy_from(&self.chol.slice_range(j + 1.., j + 1..));
// updates the bottom right corner
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
@ -247,13 +276,16 @@ where
///
/// This helper method is called by `rank_one_update` but also `insert_column` and `remove_column`
/// where it is used on a square slice of the decomposition
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(chol : &mut Matrix<N, Dm, Dm, Sm>, x: &mut Vector<N, Rx, Sx>, sigma: N::RealField)
where
//N: ComplexField,
Dm: Dim,
Rx: Dim,
Sm: StorageMut<N, Dm, Dm>,
Sx: StorageMut<N, Rx, U1>,
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(
chol: &mut Matrix<N, Dm, Dm, Sm>,
x: &mut Vector<N, Rx, Sx>,
sigma: N::RealField,
) where
//N: ComplexField,
Dm: Dim,
Rx: Dim,
Sm: StorageMut<N, Dm, Dm>,
Sx: StorageMut<N, Rx, U1>,
{
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows();
@ -293,8 +325,7 @@ where
}
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where
DefaultAllocator: Allocator<N, D, D>,
where DefaultAllocator: Allocator<N, D, D>
{
/// Attempts to compute the Cholesky decomposition of this matrix.
///

View File

@ -1,4 +1,4 @@
use alga::general::ComplexField;
use simba::scalar::ComplexField;
use crate::base::allocator::Allocator;
use crate::base::dimension::DimMin;

View File

@ -1,8 +1,8 @@
#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize};
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use num_complex::Complex;
use simba::scalar::ComplexField;
use std::cmp;
use std::fmt::Display;
use std::ops::MulAssign;
@ -10,7 +10,9 @@ use std::ops::MulAssign;
use crate::allocator::Allocator;
use crate::base::dimension::{Dim, DimDiff, DimSub, Dynamic, U1, U2, U3};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Hessenberg, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN};
use crate::base::{
DefaultAllocator, Hessenberg, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN,
};
use crate::constraint::{DimEq, ShapeConstraint};
use crate::geometry::{Reflection, UnitComplex};
@ -21,28 +23,19 @@ use crate::linalg::Schur;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(
serialize = "DefaultAllocator: Allocator<N, D>,
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize"
)
)
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(
deserialize = "DefaultAllocator: Allocator<N, D>,
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
VectorN<N, D>: Serialize,
MatrixN<N, D>: Deserialize<'de>"
)
)
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Eigen<N: ComplexField, D: Dim>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
pub eigenvectors: MatrixN<N, D>,
pub eigenvalues: VectorN<N, D>,

View File

@ -1,12 +1,12 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimMin, DimMinimum};
use crate::storage::{Storage, StorageMut};
use simba::scalar::ComplexField;
use crate::linalg::lu;
use crate::linalg::PermutationSequence;
@ -15,21 +15,17 @@ use crate::linalg::PermutationSequence;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize"
))
PermutationSequence<DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
))
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct FullPivLU<N: ComplexField, R: DimMin<C>, C: Dim>
@ -45,7 +41,8 @@ where
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
PermutationSequence<DimMinimum<R, C>>: Copy,
{}
{
}
impl<N: ComplexField, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>

View File

@ -1,19 +1,18 @@
//! Construction of givens rotations.
use alga::general::ComplexField;
use num::{Zero, One};
use num::{One, Zero};
use simba::scalar::ComplexField;
use crate::base::constraint::{DimEq, ShapeConstraint};
use crate::base::dimension::{Dim, U2};
use crate::base::constraint::{ShapeConstraint, DimEq};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{Vector, Matrix};
use crate::base::{Matrix, Vector};
/// A Givens rotation.
#[derive(Debug, Clone, Copy)]
pub struct GivensRotation<N: ComplexField> {
c: N::RealField,
s: N
s: N,
}
// Matrix = UnitComplex * Matrix
@ -22,7 +21,7 @@ impl<N: ComplexField> GivensRotation<N> {
pub fn identity() -> Self {
Self {
c: N::RealField::one(),
s: N::zero()
s: N::zero(),
}
}
@ -31,9 +30,7 @@ impl<N: ComplexField> GivensRotation<N> {
/// The components are copies as-is. It is not checked whether they describe
/// an actually valid Givens rotation.
pub fn new_unchecked(c: N::RealField, s: N) -> Self {
Self {
c, s
}
Self { c, s }
}
/// Initializes a Givens rotation from its non-normalized cosine an sine components.
@ -103,7 +100,10 @@ impl<N: ComplexField> GivensRotation<N> {
/// The inverse of this givens rotation.
pub fn inverse(&self) -> Self {
Self { c: self.c, s: -self.s }
Self {
c: self.c,
s: -self.s,
}
}
/// Performs the multiplication `rhs = self * rhs` in-place.
@ -159,4 +159,3 @@ impl<N: ComplexField> GivensRotation<N> {
}
}
}

View File

@ -1,11 +1,11 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
use crate::dimension::{DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::householder;
@ -13,21 +13,17 @@ use crate::linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize"
))
VectorN<N, DimDiff<D, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
))
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Hessenberg<N: ComplexField, D: DimSub<U1>>
@ -42,7 +38,8 @@ where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy,
{}
{
}
impl<N: ComplexField, D: DimSub<U1>> Hessenberg<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>

View File

@ -1,11 +1,11 @@
//! Construction of householder elementary reflections.
use num::Zero;
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Unit, Vector, VectorN};
use crate::dimension::Dim;
use crate::storage::{Storage, StorageMut};
use num::Zero;
use simba::scalar::ComplexField;
use crate::geometry::Reflection;

View File

@ -1,4 +1,4 @@
use alga::general::ComplexField;
use simba::scalar::ComplexField;
use crate::base::allocator::Allocator;
use crate::base::dimension::Dim;

View File

@ -1,13 +1,13 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::{Field, ComplexField};
use crate::allocator::{Allocator, Reallocator};
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimMin, DimMinimum};
use std::mem;
use crate::storage::{Storage, StorageMut};
use simba::scalar::{ComplexField, Field};
use std::mem;
use crate::linalg::PermutationSequence;
@ -15,21 +15,17 @@ use crate::linalg::PermutationSequence;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize"
))
PermutationSequence<DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
))
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct LU<N: ComplexField, R: DimMin<C>, C: Dim>
@ -44,7 +40,8 @@ where
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
PermutationSequence<DimMinimum<R, C>>: Copy,
{}
{
}
/// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`.
///
@ -333,7 +330,8 @@ where
let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
for k in 0..pivot_row.ncols() {
down.column_mut(k).axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
down.column_mut(k)
.axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
}
}
@ -364,7 +362,8 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
for k in 0..pivot_row.ncols() {
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
down.column_mut(k).axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
down.column_mut(k)
.axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
}
}

View File

@ -1,8 +1,8 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ClosedNeg;
use num::One;
use simba::scalar::ClosedNeg;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, Scalar, VectorN};
@ -15,17 +15,13 @@ use crate::storage::StorageMut;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<(usize, usize), D>,
VectorN<(usize, usize), D>: Serialize"
))
serde(bound(serialize = "DefaultAllocator: Allocator<(usize, usize), D>,
VectorN<(usize, usize), D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<(usize, usize), D>,
VectorN<(usize, usize), D>: Deserialize<'de>"
))
serde(bound(deserialize = "DefaultAllocator: Allocator<(usize, usize), D>,
VectorN<(usize, usize), D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct PermutationSequence<D: Dim>
@ -39,7 +35,8 @@ impl<D: Dim> Copy for PermutationSequence<D>
where
DefaultAllocator: Allocator<(usize, usize), D>,
VectorN<(usize, usize), D>: Copy,
{}
{
}
impl<D: DimName> PermutationSequence<D>
where DefaultAllocator: Allocator<(usize, usize), D>

View File

@ -1,13 +1,13 @@
use num::Zero;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use alga::general::ComplexField;
use crate::allocator::{Allocator, Reallocator};
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimMin, DimMinimum, U1};
use crate::storage::{Storage, StorageMut};
use simba::scalar::ComplexField;
use crate::geometry::Reflection;
use crate::linalg::householder;
@ -16,21 +16,17 @@ use crate::linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
VectorN<N, DimMinimum<R, C>>: Serialize"
))
VectorN<N, DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
))
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct QR<N: ComplexField, R: DimMin<C>, C: Dim>
@ -45,7 +41,8 @@ where
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
{}
{
}
impl<N: ComplexField, R: DimMin<C>, C: Dim> QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>
@ -77,9 +74,7 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
{
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus())));
@ -91,9 +86,7 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
/// This is usually faster than `r` but consumes `self`.
#[inline]
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
where
DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
{
where DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, N::zero());
res.fill_lower_triangle(N::zero(), 1);

View File

@ -2,8 +2,8 @@
use serde::{Deserialize, Serialize};
use approx::AbsDiffEq;
use alga::general::{ComplexField, RealField};
use num_complex::Complex as NumComplex;
use simba::scalar::{ComplexField, RealField};
use std::cmp;
use crate::allocator::Allocator;
@ -12,9 +12,9 @@ use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN};
use crate::geometry::Reflection;
use crate::linalg::givens::GivensRotation;
use crate::linalg::householder;
use crate::linalg::Hessenberg;
use crate::linalg::givens::GivensRotation;
/// Schur decomposition of a square matrix.
///
@ -22,17 +22,13 @@ use crate::linalg::givens::GivensRotation;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Serialize"
))
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Deserialize<'de>"
))
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Schur<N: ComplexField, D: Dim>
@ -46,11 +42,12 @@ impl<N: ComplexField, D: Dim> Copy for Schur<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
{}
{
}
impl<N: ComplexField, D: Dim> Schur<N, D>
where
D: DimSub<U1>, // For Hessenberg.
D: DimSub<U1>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
+ Allocator<N, DimDiff<D, U1>>
+ Allocator<N, D, D>
@ -291,8 +288,10 @@ where
/// Computes the complex eigenvalues of the decomposed matrix.
fn do_complex_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<NumComplex<N>, D>)
where N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D> {
where
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
{
let dim = t.nrows();
let mut m = 0;
@ -391,8 +390,10 @@ where
/// Computes the complex eigenvalues of the decomposed matrix.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
where N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D> {
where
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
{
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
Self::do_complex_eigenvalues(&self.t, &mut out);
out
@ -491,7 +492,7 @@ fn compute_2x2_basis<N: ComplexField, S: Storage<N, U2, U2>>(
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where
D: DimSub<U1>, // For Hessenberg.
D: DimSub<U1>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
+ Allocator<N, DimDiff<D, U1>>
+ Allocator<N, D, D>
@ -560,8 +561,10 @@ where
/// Computes the eigenvalues of this matrix.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
// FIXME: add balancing?
where N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D> {
where
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
{
let dim = self.data.shape().0;
let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) };

View File

@ -1,10 +1,10 @@
use alga::general::ComplexField;
use simba::scalar::ComplexField;
use crate::base::allocator::Allocator;
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::base::dimension::{Dim, U1};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector, DVectorSlice};
use crate::base::{DVectorSlice, DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector};
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
@ -190,10 +190,10 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
if self.tr_solve_lower_triangular_mut(&mut res) {
@ -210,10 +210,10 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
if self.tr_solve_upper_triangular_mut(&mut res) {
@ -229,14 +229,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &mut Matrix<N, R2, C2, S2>,
) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let cols = b.ncols();
for i in 0..cols {
if !self.xx_solve_lower_triangular_vector_mut(&mut b.column_mut(i), |e| e, |a, b| a.dot(b)) {
if !self.xx_solve_lower_triangular_vector_mut(
&mut b.column_mut(i),
|e| e,
|a, b| a.dot(b),
) {
return false;
}
}
@ -250,14 +254,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &mut Matrix<N, R2, C2, S2>,
) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let cols = b.ncols();
for i in 0..cols {
if !self.xx_solve_upper_triangular_vector_mut(&mut b.column_mut(i), |e| e, |a, b| a.dot(b)) {
if !self.xx_solve_upper_triangular_vector_mut(
&mut b.column_mut(i),
|e| e,
|a, b| a.dot(b),
) {
return false;
}
}
@ -272,10 +280,10 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
if self.ad_solve_lower_triangular_mut(&mut res) {
@ -292,10 +300,10 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
if self.ad_solve_upper_triangular_mut(&mut res) {
@ -311,14 +319,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &mut Matrix<N, R2, C2, S2>,
) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let cols = b.ncols();
for i in 0..cols {
if !self.xx_solve_lower_triangular_vector_mut(&mut b.column_mut(i), |e| e.conjugate(), |a, b| a.dotc(b)) {
if !self.xx_solve_lower_triangular_vector_mut(
&mut b.column_mut(i),
|e| e.conjugate(),
|a, b| a.dotc(b),
) {
return false;
}
}
@ -332,14 +344,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &mut Matrix<N, R2, C2, S2>,
) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let cols = b.ncols();
for i in 0..cols {
if !self.xx_solve_upper_triangular_vector_mut(&mut b.column_mut(i), |e| e.conjugate(), |a, b| a.dotc(b)) {
if !self.xx_solve_upper_triangular_vector_mut(
&mut b.column_mut(i),
|e| e.conjugate(),
|a, b| a.dotc(b),
) {
return false;
}
}
@ -347,17 +363,19 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
true
}
#[inline(always)]
fn xx_solve_lower_triangular_vector_mut<R2: Dim, S2>(
&self,
b: &mut Vector<N, R2, S2>,
conjugate: impl Fn(N) -> N,
dot: impl Fn(&DVectorSlice<N, S::RStride, S::CStride>, &DVectorSlice<N, S2::RStride, S2::CStride>) -> N,
dot: impl Fn(
&DVectorSlice<N, S::RStride, S::CStride>,
&DVectorSlice<N, S2::RStride, S2::CStride>,
) -> N,
) -> bool
where
S2: StorageMut<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let dim = self.nrows();
@ -385,11 +403,14 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
&self,
b: &mut Vector<N, R2, S2>,
conjugate: impl Fn(N) -> N,
dot: impl Fn(&DVectorSlice<N, S::RStride, S::CStride>, &DVectorSlice<N, S2::RStride, S2::CStride>) -> N,
dot: impl Fn(
&DVectorSlice<N, S::RStride, S::CStride>,
&DVectorSlice<N, S2::RStride, S2::CStride>,
) -> N,
) -> bool
where
S2: StorageMut<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
where
S2: StorageMut<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let dim = self.nrows();

View File

@ -1,19 +1,19 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::{Zero, One};
use approx::AbsDiffEq;
use num::{One, Zero};
use alga::general::{RealField, ComplexField};
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, Matrix2x3, MatrixMN, Vector2, VectorN};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1, U2};
use crate::storage::Storage;
use simba::scalar::{ComplexField, RealField};
use crate::linalg::givens::GivensRotation;
use crate::linalg::symmetric_eigen;
use crate::linalg::Bidiagonal;
use crate::linalg::givens::GivensRotation;
/// Singular Value Decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
@ -61,7 +61,8 @@ where
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N::RealField, DimMinimum<R, C>>: Copy,
{}
{
}
impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C>
where
@ -78,7 +79,14 @@ where
{
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self {
Self::try_new(matrix, compute_u, compute_v, N::RealField::default_epsilon(), 0).unwrap()
Self::try_new(
matrix,
compute_u,
compute_v,
N::RealField::default_epsilon(),
0,
)
.unwrap()
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
@ -120,7 +128,15 @@ where
let mut off_diagonal = b.off_diagonal();
let mut niter = 0;
let (mut start, mut end) = Self::delimit_subproblem(&mut diagonal, &mut off_diagonal, &mut u, &mut v_t, b.is_upper_diagonal(), dim - 1, eps);
let (mut start, mut end) = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
b.is_upper_diagonal(),
dim - 1,
eps,
);
while end != start {
let subdim = end - start + 1;
@ -165,7 +181,8 @@ where
);
if let Some((rot1, norm1)) = GivensRotation::cancel_y(&vec) {
rot1.inverse().rotate_rows(&mut subm.fixed_columns_mut::<U2>(0));
rot1.inverse()
.rotate_rows(&mut subm.fixed_columns_mut::<U2>(0));
let rot1 = GivensRotation::new_unchecked(rot1.c(), N::from_real(rot1.s()));
if k > start {
@ -175,8 +192,8 @@ where
let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]);
// FIXME: does the case `v.y == 0` ever happen?
let (rot2, norm2) =
GivensRotation::cancel_y(&v).unwrap_or((GivensRotation::identity(), subm[(0, 0)]));
let (rot2, norm2) = GivensRotation::cancel_y(&v)
.unwrap_or((GivensRotation::identity(), subm[(0, 0)]));
rot2.rotate(&mut subm.fixed_columns_mut::<U2>(1));
let rot2 = GivensRotation::new_unchecked(rot2.c(), N::from_real(rot2.s()));
@ -253,7 +270,15 @@ where
}
// Re-delimit the subproblem in case some decoupling occurred.
let sub = Self::delimit_subproblem(&mut diagonal, &mut off_diagonal, &mut u, &mut v_t, b.is_upper_diagonal(), end, eps);
let sub = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
b.is_upper_diagonal(),
end,
eps,
);
start = sub.0;
end = sub.1;
@ -321,14 +346,36 @@ where
off_diagonal[m] = N::RealField::zero();
} else if diagonal[m].norm1() <= eps {
diagonal[m] = N::RealField::zero();
Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, m + 1);
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
m + 1,
);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m - 1);
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
} else if diagonal[n].norm1() <= eps {
diagonal[n] = N::RealField::zero();
Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m);
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
);
} else {
break;
}
@ -352,10 +399,25 @@ where
// FIXME: write a test that enters this case.
else if diagonal[m].norm1() <= eps {
diagonal[m] = N::RealField::zero();
Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, n);
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
n,
);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m - 1);
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
break;
}
@ -469,7 +531,7 @@ where
}
(None, None) => Err("SVD recomposition: U and V^t have not been computed."),
(None, _) => Err("SVD recomposition: U has not been computed."),
(_, None) => Err("SVD recomposition: V^t has not been computed.")
(_, None) => Err("SVD recomposition: V^t has not been computed."),
}
}
@ -479,13 +541,10 @@ where
/// Returns `Err` if the right- and left- singular vectors have not
/// been computed at construction-time.
pub fn pseudo_inverse(mut self, eps: N::RealField) -> Result<MatrixMN<N, C, R>, &'static str>
where
DefaultAllocator: Allocator<N, C, R>,
{
where DefaultAllocator: Allocator<N, C, R> {
if eps < N::RealField::zero() {
Err("SVD pseudo inverse: the epsilon must be non-negative.")
}
else {
} else {
for i in 0..self.singular_values.len() {
let val = self.singular_values[i];
@ -517,8 +576,7 @@ where
{
if eps < N::RealField::zero() {
Err("SVD solve: the epsilon must be non-negative.")
}
else {
} else {
match (&self.u, &self.v_t) {
(Some(u), Some(v_t)) => {
let mut ut_b = u.ad_mul(b);
@ -540,7 +598,7 @@ where
}
(None, None) => Err("SVD solve: U and V^t have not been computed."),
(None, _) => Err("SVD solve: U has not been computed."),
(_, None) => Err("SVD solve: V^t has not been computed.")
(_, None) => Err("SVD solve: V^t has not been computed."),
}
}
}
@ -602,14 +660,11 @@ where
///
/// All singular values below `eps` are considered equal to 0.
pub fn pseudo_inverse(self, eps: N::RealField) -> Result<MatrixMN<N, C, R>, &'static str>
where
DefaultAllocator: Allocator<N, C, R>,
{
where DefaultAllocator: Allocator<N, C, R> {
SVD::new(self.clone_owned(), true, true).pseudo_inverse(eps)
}
}
// Explicit formulae inspired from the paper "Computing the Singular Values of 2-by-2 Complex
// Matrices", Sanzheng Qiao and Xiaohong Wang.
// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf
@ -619,7 +674,11 @@ fn compute_2x2_uptrig_svd<N: RealField>(
m22: N,
compute_u: bool,
compute_v: bool,
) -> (Option<GivensRotation<N>>, Vector2<N>, Option<GivensRotation<N>>)
) -> (
Option<GivensRotation<N>>,
Vector2<N>,
Option<GivensRotation<N>>,
)
{
let two: N::RealField = crate::convert(2.0f64);
let half: N::RealField = crate::convert(0.5f64);

View File

@ -1,14 +1,14 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use approx::AbsDiffEq;
use num::Zero;
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix2, MatrixN, SquareMatrix, Vector2, VectorN};
use crate::dimension::{Dim, DimDiff, DimSub, U1, U2};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::givens::GivensRotation;
use crate::linalg::SymmetricTridiagonal;
@ -17,21 +17,17 @@ use crate::linalg::SymmetricTridiagonal;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N::RealField, D>,
VectorN<N::RealField, D>: Serialize,
MatrixN<N, D>: Serialize"
))
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N::RealField, D>,
VectorN<N::RealField, D>: Deserialize<'de>,
MatrixN<N, D>: Deserialize<'de>"
))
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<N: ComplexField, D: Dim>
@ -49,7 +45,8 @@ where
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
MatrixN<N, D>: Copy,
VectorN<N::RealField, D>: Copy,
{}
{
}
impl<N: ComplexField, D: Dim> SymmetricEigen<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
@ -60,8 +57,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
pub fn new(m: MatrixN<N, D>) -> Self
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + // For tridiagonalization
Allocator<N::RealField, DimDiff<D, U1>>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
{
Self::try_new(m, N::RealField::default_epsilon(), 0).unwrap()
}
@ -80,8 +76,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
pub fn try_new(m: MatrixN<N, D>, eps: N::RealField, max_niter: usize) -> Option<Self>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + // For tridiagonalization
Allocator<N::RealField, DimDiff<D, U1>>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
{
Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| SymmetricEigen {
eigenvectors: vecs.unwrap(),
@ -97,8 +92,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
) -> Option<(VectorN<N::RealField, D>, Option<MatrixN<N, D>>)>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + // For tridiagonalization
Allocator<N::RealField, DimDiff<D, U1>>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> + Allocator<N::RealField, DimDiff<D, U1>>,
{
assert!(
m.is_square(),
@ -154,7 +148,6 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
off_diag[i - 1] = norm;
}
let mii = diag[i];
let mjj = diag[j];
let mij = off_diag[i];
@ -189,8 +182,10 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
}
} else if subdim == 2 {
let m = Matrix2::new(
diag[start], off_diag[start].conjugate(),
off_diag[start], diag[start + 1],
diag[start],
off_diag[start].conjugate(),
off_diag[start],
diag[start + 1],
);
let eigvals = m.eigenvalues().unwrap();
let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]);
@ -305,8 +300,10 @@ pub fn wilkinson_shift<N: ComplexField>(tmm: N, tnn: N, tmn: N) -> N {
*
*/
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>> +
Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>
where DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, DimDiff<D, U1>>
+ Allocator<N::RealField, D>
+ Allocator<N::RealField, DimDiff<D, U1>>
{
/// Computes the eigendecomposition of this symmetric matrix.
///
@ -326,7 +323,12 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>> +
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_symmetric_eigen(self, eps: N::RealField, max_niter: usize) -> Option<SymmetricEigen<N, D>> {
pub fn try_symmetric_eigen(
self,
eps: N::RealField,
max_niter: usize,
) -> Option<SymmetricEigen<N, D>>
{
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
}
@ -334,9 +336,14 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>> +
///
/// Only the lower-triangular part of the matrix is read.
pub fn symmetric_eigenvalues(&self) -> VectorN<N::RealField, D> {
SymmetricEigen::do_decompose(self.clone_owned(), false, N::RealField::default_epsilon(), 0)
.unwrap()
.0
SymmetricEigen::do_decompose(
self.clone_owned(),
false,
N::RealField::default_epsilon(),
0,
)
.unwrap()
.0
}
}

View File

@ -1,11 +1,11 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::ComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
use crate::dimension::{DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::householder;
@ -13,21 +13,17 @@ use crate::linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize"
))
VectorN<N, DimDiff<D, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
))
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricTridiagonal<N: ComplexField, D: DimSub<U1>>
@ -42,7 +38,8 @@ where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy,
{}
{
}
impl<N: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
@ -98,9 +95,15 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
/// Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this
/// decomposition.
pub fn unpack(self) -> (MatrixN<N, D>, VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>)
where DefaultAllocator: Allocator<N::RealField, D>
+ Allocator<N::RealField, DimDiff<D, U1>> {
pub fn unpack(
self,
) -> (
MatrixN<N, D>,
VectorN<N::RealField, D>,
VectorN<N::RealField, DimDiff<D, U1>>,
)
where DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>
{
let diag = self.diagonal();
let q = self.q();
@ -108,15 +111,22 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
}
/// Retrieve the diagonal, and off diagonal elements of this decomposition.
pub fn unpack_tridiagonal(self) -> (VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>)
where DefaultAllocator: Allocator<N::RealField, D>
+ Allocator<N::RealField, DimDiff<D, U1>> {
pub fn unpack_tridiagonal(
self,
) -> (
VectorN<N::RealField, D>,
VectorN<N::RealField, DimDiff<D, U1>>,
)
where DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>
{
(self.diagonal(), self.off_diagonal.map(N::modulus))
}
/// The diagonal components of this decomposition.
pub fn diagonal(&self) -> VectorN<N::RealField, D>
where DefaultAllocator: Allocator<N::RealField, D> { self.tri.map_diagonal(|e| e.real()) }
where DefaultAllocator: Allocator<N::RealField, D> {
self.tri.map_diagonal(|e| e.real())
}
/// The off-diagonal components of this decomposition.
pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<D, U1>>

View File

@ -1,5 +1,5 @@
use alga::general::ClosedAdd;
use num::Zero;
use simba::scalar::ClosedAdd;
use std::iter;
use std::marker::PhantomData;
use std::ops::Range;
@ -7,9 +7,7 @@ use std::slice;
use crate::allocator::Allocator;
use crate::sparse::cs_utils;
use crate::{
DefaultAllocator, Dim, Dynamic, Scalar, Vector, VectorN, U1
};
use crate::{DefaultAllocator, Dim, Dynamic, Scalar, Vector, VectorN, U1};
pub struct ColumnEntries<'a, N> {
curr: usize,
@ -33,9 +31,11 @@ impl<'a, N: Clone> Iterator for ColumnEntries<'a, N> {
if self.curr >= self.i.len() {
None
} else {
let res = Some((unsafe { self.i.get_unchecked(self.curr).clone() }, unsafe {
self.v.get_unchecked(self.curr).clone()
}));
let res = Some(
(unsafe { self.i.get_unchecked(self.curr).clone() }, unsafe {
self.v.get_unchecked(self.curr).clone()
}),
);
self.curr += 1;
res
}

View File

@ -1,5 +1,5 @@
use alga::general::ClosedAdd;
use num::Zero;
use simba::scalar::ClosedAdd;
use crate::allocator::Allocator;
use crate::sparse::cs_utils;

View File

@ -1,5 +1,5 @@
use alga::general::{ClosedAdd, ClosedMul};
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul};
use std::ops::{Add, Mul};
use crate::allocator::Allocator;

Some files were not shown because too many files have changed in this diff Show More