Merge pull request #996 from MaxVerevkin/simple-is_identity
Simplify Matrix::is_identity while also improving performance
This commit is contained in:
commit
ec5e16d117
|
@ -7,10 +7,10 @@ use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
|
|||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, DimMin};
|
||||
use crate::base::storage::Storage;
|
||||
use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix};
|
||||
use crate::base::{DefaultAllocator, Matrix, SquareMatrix};
|
||||
use crate::RawStorage;
|
||||
|
||||
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
/// The total number of elements of this matrix.
|
||||
///
|
||||
/// # Examples:
|
||||
|
@ -63,50 +63,18 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|||
T::Epsilon: Clone,
|
||||
{
|
||||
let (nrows, ncols) = self.shape();
|
||||
let d;
|
||||
|
||||
if nrows > ncols {
|
||||
d = ncols;
|
||||
|
||||
for i in d..nrows {
|
||||
for j in 0..ncols {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// nrows <= ncols
|
||||
d = nrows;
|
||||
|
||||
for i in 0..nrows {
|
||||
for j in d..ncols {
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Off-diagonal elements of the sub-square matrix.
|
||||
for i in 1..d {
|
||||
for j in 0..i {
|
||||
// TODO: use unsafe indexing.
|
||||
if !relative_eq!(self[(i, j)], T::zero(), epsilon = eps.clone())
|
||||
|| !relative_eq!(self[(j, i)], T::zero(), epsilon = eps.clone())
|
||||
let el = unsafe { self.get_unchecked((i, j)) };
|
||||
if (i == j && !relative_eq!(*el, T::one(), epsilon = eps.clone()))
|
||||
|| (i != j && !relative_eq!(*el, T::zero(), epsilon = eps.clone()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Diagonal elements of the sub-square matrix.
|
||||
for i in 0..d {
|
||||
if !relative_eq!(self[(i, i)], T::one(), epsilon = eps.clone()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
|
|
|
@ -351,7 +351,7 @@ impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T> {
|
|||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps.clone()) ||
|
||||
self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps) ||
|
||||
// Account for the double-covering of S², i.e. q = -q.
|
||||
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps))
|
||||
}
|
||||
|
|
|
@ -629,7 +629,7 @@ where
|
|||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.translation
|
||||
.ulps_eq(&other.translation, epsilon.clone(), max_ulps.clone())
|
||||
.ulps_eq(&other.translation, epsilon.clone(), max_ulps)
|
||||
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -415,7 +415,7 @@ where
|
|||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.isometry
|
||||
.ulps_eq(&other.isometry, epsilon.clone(), max_ulps.clone())
|
||||
.ulps_eq(&other.isometry, epsilon.clone(), max_ulps)
|
||||
&& self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -458,8 +458,7 @@ impl<T: RealField> UlpsEq for UnitComplex<T> {
|
|||
|
||||
#[inline]
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.re
|
||||
.ulps_eq(&other.re, epsilon.clone(), max_ulps.clone())
|
||||
self.re.ulps_eq(&other.re, epsilon.clone(), max_ulps)
|
||||
&& self.im.ulps_eq(&other.im, epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue