added powf proptest for 4d rotations
This commit is contained in:
parent
7b92e114f9
commit
e52057b8a5
|
@ -118,12 +118,16 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
||||||
pub fn general_pow(self, t:T) -> Self {
|
pub fn general_pow(self, t:T) -> Self {
|
||||||
if D<=1 { return self; }
|
if D<=1 { return self; }
|
||||||
|
|
||||||
|
println!("r:{}", self);
|
||||||
|
|
||||||
//taking the (real) schur form is guaranteed to produce a block-diagonal matrix
|
//taking the (real) schur form is guaranteed to produce a block-diagonal matrix
|
||||||
//where each block is either a 1 (if there's no rotation in that axis) or a 2x2
|
//where each block is either a 1 (if there's no rotation in that axis) or a 2x2
|
||||||
//rotation matrix in a particular plane
|
//rotation matrix in a particular plane
|
||||||
let schur = self.into_inner().schur();
|
let schur = self.into_inner().schur();
|
||||||
let (q, mut d) = schur.unpack();
|
let (q, mut d) = schur.unpack();
|
||||||
|
|
||||||
|
println!("q:{}d:{:.3}", q, d);
|
||||||
|
|
||||||
//go down the diagonal and pow every block
|
//go down the diagonal and pow every block
|
||||||
for i in 0..(D-1) {
|
for i in 0..(D-1) {
|
||||||
|
|
||||||
|
@ -131,10 +135,14 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
||||||
//NOTE: the impl of the schur decomposition always sets the inferior diagonal to 0
|
//NOTE: the impl of the schur decomposition always sets the inferior diagonal to 0
|
||||||
if !d[(i+1,i)].is_zero() {
|
if !d[(i+1,i)].is_zero() {
|
||||||
|
|
||||||
|
println!("{}", i);
|
||||||
|
|
||||||
//convert to a complex num and take the arg()
|
//convert to a complex num and take the arg()
|
||||||
let (c, s) = (d[(i,i)].clone(), d[(i+1,i)].clone());
|
let (c, s) = (d[(i,i)].clone(), d[(i+1,i)].clone());
|
||||||
let angle = s.atan2(c);
|
let angle = s.atan2(c);
|
||||||
|
|
||||||
|
println!("{}", angle);
|
||||||
|
|
||||||
//scale the arg and exponentiate back
|
//scale the arg and exponentiate back
|
||||||
let angle2 = angle * t.clone();
|
let angle2 = angle * t.clone();
|
||||||
let (s2, c2) = angle2.sin_cos();
|
let (s2, c2) = angle2.sin_cos();
|
||||||
|
@ -148,6 +156,7 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
println!("d:{:.3}", d);
|
||||||
|
|
||||||
let qt = q.transpose(); //avoids an extra clone
|
let qt = q.transpose(); //avoids an extra clone
|
||||||
|
|
||||||
|
|
|
@ -32,7 +32,7 @@ fn quaternion_euler_angles_issue_494() {
|
||||||
|
|
||||||
#[cfg(feature = "proptest-support")]
|
#[cfg(feature = "proptest-support")]
|
||||||
mod proptest_tests {
|
mod proptest_tests {
|
||||||
use na::{self, Rotation2, Rotation3, Unit};
|
use na::{self, Rotation, Rotation2, Rotation3, Unit};
|
||||||
use simba::scalar::RealField;
|
use simba::scalar::RealField;
|
||||||
use std::f64;
|
use std::f64;
|
||||||
|
|
||||||
|
@ -229,5 +229,79 @@ mod proptest_tests {
|
||||||
prop_assert_eq!(r, Rotation3::identity())
|
prop_assert_eq!(r, Rotation3::identity())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// macro_rules! gen_pof_rotation_test {
|
||||||
|
// ($(
|
||||||
|
// fn $powf_rot_n:ident($($v1:ident in $vec1:ident(), $v2:ident in $vec2:ident()),*);
|
||||||
|
// )*) => {$
|
||||||
|
//
|
||||||
|
// #[test]
|
||||||
|
// fn $powf_rot_n(
|
||||||
|
// $($v1 in $vec1(), $v2 in $vec2(),)*
|
||||||
|
// pow in PROPTEST_F64
|
||||||
|
// ) {
|
||||||
|
//
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// )*}
|
||||||
|
// }
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn powf_rotation_4(
|
||||||
|
v1 in vector4(), v2 in vector4(),
|
||||||
|
v3 in vector4(), v4 in vector4(),
|
||||||
|
pow in PROPTEST_F64
|
||||||
|
) {
|
||||||
|
|
||||||
|
use nalgebra::*;
|
||||||
|
use num_traits::Zero;
|
||||||
|
|
||||||
|
type Rotation4<T> = Rotation<T,4>;
|
||||||
|
|
||||||
|
//make an orthonormal basis
|
||||||
|
let mut basis = [v1,v2,v3,v4];
|
||||||
|
Vector::orthonormalize(&mut basis);
|
||||||
|
let [v1,v2,v3,v4] = basis;
|
||||||
|
|
||||||
|
//"wedge" the vectors to make two 2-blades representing two rotation planes
|
||||||
|
//since we start with vector pairs, each bivector is guaranteed to be simple
|
||||||
|
let mut b1 = v1.transpose().kronecker(&v2) - v2.transpose().kronecker(&v1);
|
||||||
|
let mut b2 = v3.transpose().kronecker(&v4) - v4.transpose().kronecker(&v3);
|
||||||
|
|
||||||
|
//condition b1
|
||||||
|
if let Some((unit, norm)) = Unit::try_new_and_get(b1, 0.0) {
|
||||||
|
//every component is duplicated once, so there's an extra factor or sqrt(2) in the norm
|
||||||
|
//and wrap angle into the correct range
|
||||||
|
let mut angle = norm / 2.0f64.sqrt();
|
||||||
|
angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||||
|
b1 = unit.into_inner() * angle * 2.0f64.sqrt();
|
||||||
|
}
|
||||||
|
|
||||||
|
//condition b2
|
||||||
|
if let Some((unit, norm)) = Unit::try_new_and_get(b2, 0.0) {
|
||||||
|
let mut angle = norm / 2.0f64.sqrt();
|
||||||
|
angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||||
|
b2 = unit.into_inner() * angle * 2.0f64.sqrt();
|
||||||
|
}
|
||||||
|
|
||||||
|
let bivector = b1+b2;
|
||||||
|
|
||||||
|
println!("b:{:.3}", bivector);
|
||||||
|
|
||||||
|
let r1 = Rotation4::from_matrix_unchecked(bivector.exp());
|
||||||
|
let r2 = Rotation4::from_matrix_unchecked((bivector * pow).exp());
|
||||||
|
|
||||||
|
// println!("{}{}", r1, r2);
|
||||||
|
// println!("{}", r1.general_pow(pow));
|
||||||
|
|
||||||
|
prop_assert!(
|
||||||
|
relative_eq!(r1.general_pow(pow), r2, epsilon=1e-7)
|
||||||
|
);
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue