Merge pull request #1081 from smr97/dev
Make sparse-times-sparse faster
This commit is contained in:
commit
dd801567f2
|
@ -3,7 +3,7 @@ use crate::csr::CsrMatrix;
|
||||||
|
|
||||||
use crate::ops::serial::{
|
use crate::ops::serial::{
|
||||||
spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_pattern,
|
spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_pattern,
|
||||||
spmm_csc_prealloc, spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc,
|
spmm_csc_prealloc_unchecked, spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc_unchecked,
|
||||||
};
|
};
|
||||||
use crate::ops::Op;
|
use crate::ops::Op;
|
||||||
use nalgebra::allocator::Allocator;
|
use nalgebra::allocator::Allocator;
|
||||||
|
@ -112,9 +112,9 @@ macro_rules! impl_spmm {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl_spmm!(CsrMatrix, spmm_csr_pattern, spmm_csr_prealloc);
|
impl_spmm!(CsrMatrix, spmm_csr_pattern, spmm_csr_prealloc_unchecked);
|
||||||
// Need to switch order of operations for CSC pattern
|
// Need to switch order of operations for CSC pattern
|
||||||
impl_spmm!(CscMatrix, spmm_csc_pattern, spmm_csc_prealloc);
|
impl_spmm!(CscMatrix, spmm_csc_pattern, spmm_csc_prealloc_unchecked);
|
||||||
|
|
||||||
/// Implements Scalar * Matrix operations for *concrete* scalar types. The reason this is necessary
|
/// Implements Scalar * Matrix operations for *concrete* scalar types. The reason this is necessary
|
||||||
/// is that we are not able to implement Mul<Matrix<T>> for all T generically due to orphan rules.
|
/// is that we are not able to implement Mul<Matrix<T>> for all T generically due to orphan rules.
|
||||||
|
|
|
@ -20,6 +20,51 @@ fn spmm_cs_unexpected_entry() -> OperationError {
|
||||||
/// reversed (since transpose(AB) = transpose(B) * transpose(A) and CSC(A) = transpose(CSR(A)).
|
/// reversed (since transpose(AB) = transpose(B) * transpose(A) and CSC(A) = transpose(CSR(A)).
|
||||||
///
|
///
|
||||||
/// We assume here that the matrices have already been verified to be dimensionally compatible.
|
/// We assume here that the matrices have already been verified to be dimensionally compatible.
|
||||||
|
pub fn spmm_cs_prealloc_unchecked<T>(
|
||||||
|
beta: T,
|
||||||
|
c: &mut CsMatrix<T>,
|
||||||
|
alpha: T,
|
||||||
|
a: &CsMatrix<T>,
|
||||||
|
b: &CsMatrix<T>,
|
||||||
|
) -> Result<(), OperationError>
|
||||||
|
where
|
||||||
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||||
|
{
|
||||||
|
assert_eq!(c.pattern().major_dim(), a.pattern().major_dim());
|
||||||
|
assert_eq!(c.pattern().minor_dim(), b.pattern().minor_dim());
|
||||||
|
let some_val = Zero::zero();
|
||||||
|
let mut scratchpad_values: Vec<T> = vec![some_val; b.pattern().minor_dim()];
|
||||||
|
for i in 0..c.pattern().major_dim() {
|
||||||
|
let a_lane_i = a.get_lane(i).unwrap();
|
||||||
|
|
||||||
|
let mut c_lane_i = c.get_lane_mut(i).unwrap();
|
||||||
|
|
||||||
|
for (&k, a_ik) in a_lane_i.minor_indices().iter().zip(a_lane_i.values()) {
|
||||||
|
let b_lane_k = b.get_lane(k).unwrap();
|
||||||
|
let alpha_aik = alpha.clone() * a_ik.clone();
|
||||||
|
for (j, b_kj) in b_lane_k.minor_indices().iter().zip(b_lane_k.values()) {
|
||||||
|
// use a dense scatter vector to accumulate non-zeros quickly
|
||||||
|
unsafe {
|
||||||
|
*scratchpad_values.get_unchecked_mut(*j) += alpha_aik.clone() * b_kj.clone();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Get indices from C pattern and gather from the dense scratchpad_values
|
||||||
|
let (indices, values) = c_lane_i.indices_and_values_mut();
|
||||||
|
values
|
||||||
|
.iter_mut()
|
||||||
|
.zip(indices)
|
||||||
|
.for_each(|(output_ref, index)| unsafe {
|
||||||
|
*output_ref = beta.clone() * output_ref.clone()
|
||||||
|
+ scratchpad_values.get_unchecked(*index).clone();
|
||||||
|
*scratchpad_values.get_unchecked_mut(*index) = Zero::zero();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
pub fn spmm_cs_prealloc<T>(
|
pub fn spmm_cs_prealloc<T>(
|
||||||
beta: T,
|
beta: T,
|
||||||
c: &mut CsMatrix<T>,
|
c: &mut CsMatrix<T>,
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
use crate::csc::CscMatrix;
|
use crate::csc::CscMatrix;
|
||||||
use crate::ops::serial::cs::{spadd_cs_prealloc, spmm_cs_dense, spmm_cs_prealloc};
|
use crate::ops::serial::cs::{
|
||||||
|
spadd_cs_prealloc, spmm_cs_dense, spmm_cs_prealloc, spmm_cs_prealloc_unchecked,
|
||||||
|
};
|
||||||
use crate::ops::serial::{OperationError, OperationErrorKind};
|
use crate::ops::serial::{OperationError, OperationErrorKind};
|
||||||
use crate::ops::Op;
|
use crate::ops::Op;
|
||||||
use nalgebra::{ClosedAdd, ClosedMul, DMatrixSlice, DMatrixSliceMut, RealField, Scalar};
|
use nalgebra::{ClosedAdd, ClosedMul, DMatrixSlice, DMatrixSliceMut, RealField, Scalar};
|
||||||
|
@ -83,35 +85,81 @@ where
|
||||||
{
|
{
|
||||||
assert_compatible_spmm_dims!(c, a, b);
|
assert_compatible_spmm_dims!(c, a, b);
|
||||||
|
|
||||||
use Op::{NoOp, Transpose};
|
use Op::NoOp;
|
||||||
|
|
||||||
match (&a, &b) {
|
match (&a, &b) {
|
||||||
(NoOp(ref a), NoOp(ref b)) => {
|
(NoOp(ref a), NoOp(ref b)) => {
|
||||||
// Note: We have to reverse the order for CSC matrices
|
// Note: We have to reverse the order for CSC matrices
|
||||||
spmm_cs_prealloc(beta, &mut c.cs, alpha, &b.cs, &a.cs)
|
spmm_cs_prealloc(beta, &mut c.cs, alpha, &b.cs, &a.cs)
|
||||||
}
|
}
|
||||||
_ => {
|
_ => spmm_csc_transposed(beta, c, alpha, a, b, spmm_csc_prealloc),
|
||||||
// Currently we handle transposition by explicitly precomputing transposed matrices
|
|
||||||
// and calling the operation again without transposition
|
|
||||||
let a_ref: &CscMatrix<T> = a.inner_ref();
|
|
||||||
let b_ref: &CscMatrix<T> = b.inner_ref();
|
|
||||||
let (a, b) = {
|
|
||||||
use Cow::*;
|
|
||||||
match (&a, &b) {
|
|
||||||
(NoOp(_), NoOp(_)) => unreachable!(),
|
|
||||||
(Transpose(ref a), NoOp(_)) => (Owned(a.transpose()), Borrowed(b_ref)),
|
|
||||||
(NoOp(_), Transpose(ref b)) => (Borrowed(a_ref), Owned(b.transpose())),
|
|
||||||
(Transpose(ref a), Transpose(ref b)) => {
|
|
||||||
(Owned(a.transpose()), Owned(b.transpose()))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
spmm_csc_prealloc(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Faster sparse-sparse matrix multiplication, `C <- beta * C + alpha * op(A) * op(B)`.
|
||||||
|
/// This will not return an error even if the patterns don't match.
|
||||||
|
/// Should be used for situations where pattern creation immediately preceeds multiplication.
|
||||||
|
///
|
||||||
|
/// Panics if the dimensions of the matrices involved are not compatible with the expression.
|
||||||
|
pub fn spmm_csc_prealloc_unchecked<T>(
|
||||||
|
beta: T,
|
||||||
|
c: &mut CscMatrix<T>,
|
||||||
|
alpha: T,
|
||||||
|
a: Op<&CscMatrix<T>>,
|
||||||
|
b: Op<&CscMatrix<T>>,
|
||||||
|
) -> Result<(), OperationError>
|
||||||
|
where
|
||||||
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||||
|
{
|
||||||
|
assert_compatible_spmm_dims!(c, a, b);
|
||||||
|
|
||||||
|
use Op::NoOp;
|
||||||
|
|
||||||
|
match (&a, &b) {
|
||||||
|
(NoOp(ref a), NoOp(ref b)) => {
|
||||||
|
// Note: We have to reverse the order for CSC matrices
|
||||||
|
spmm_cs_prealloc_unchecked(beta, &mut c.cs, alpha, &b.cs, &a.cs)
|
||||||
|
}
|
||||||
|
_ => spmm_csc_transposed(beta, c, alpha, a, b, spmm_csc_prealloc_unchecked),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn spmm_csc_transposed<T, F>(
|
||||||
|
beta: T,
|
||||||
|
c: &mut CscMatrix<T>,
|
||||||
|
alpha: T,
|
||||||
|
a: Op<&CscMatrix<T>>,
|
||||||
|
b: Op<&CscMatrix<T>>,
|
||||||
|
spmm_kernel: F,
|
||||||
|
) -> Result<(), OperationError>
|
||||||
|
where
|
||||||
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||||
|
F: Fn(
|
||||||
|
T,
|
||||||
|
&mut CscMatrix<T>,
|
||||||
|
T,
|
||||||
|
Op<&CscMatrix<T>>,
|
||||||
|
Op<&CscMatrix<T>>,
|
||||||
|
) -> Result<(), OperationError>,
|
||||||
|
{
|
||||||
|
use Op::{NoOp, Transpose};
|
||||||
|
|
||||||
|
// Currently we handle transposition by explicitly precomputing transposed matrices
|
||||||
|
// and calling the operation again without transposition
|
||||||
|
let a_ref: &CscMatrix<T> = a.inner_ref();
|
||||||
|
let b_ref: &CscMatrix<T> = b.inner_ref();
|
||||||
|
let (a, b) = {
|
||||||
|
use Cow::*;
|
||||||
|
match (&a, &b) {
|
||||||
|
(NoOp(_), NoOp(_)) => unreachable!(),
|
||||||
|
(Transpose(ref a), NoOp(_)) => (Owned(a.transpose()), Borrowed(b_ref)),
|
||||||
|
(NoOp(_), Transpose(ref b)) => (Borrowed(a_ref), Owned(b.transpose())),
|
||||||
|
(Transpose(ref a), Transpose(ref b)) => (Owned(a.transpose()), Owned(b.transpose())),
|
||||||
|
}
|
||||||
|
};
|
||||||
|
spmm_kernel(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
||||||
|
}
|
||||||
|
|
||||||
/// Solve the lower triangular system `op(L) X = B`.
|
/// Solve the lower triangular system `op(L) X = B`.
|
||||||
///
|
///
|
||||||
/// Only the lower triangular part of L is read, and the result is stored in B.
|
/// Only the lower triangular part of L is read, and the result is stored in B.
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
use crate::csr::CsrMatrix;
|
use crate::csr::CsrMatrix;
|
||||||
use crate::ops::serial::cs::{spadd_cs_prealloc, spmm_cs_dense, spmm_cs_prealloc};
|
use crate::ops::serial::cs::{
|
||||||
|
spadd_cs_prealloc, spmm_cs_dense, spmm_cs_prealloc, spmm_cs_prealloc_unchecked,
|
||||||
|
};
|
||||||
use crate::ops::serial::OperationError;
|
use crate::ops::serial::OperationError;
|
||||||
use crate::ops::Op;
|
use crate::ops::Op;
|
||||||
use nalgebra::{ClosedAdd, ClosedMul, DMatrixSlice, DMatrixSliceMut, Scalar};
|
use nalgebra::{ClosedAdd, ClosedMul, DMatrixSlice, DMatrixSliceMut, Scalar};
|
||||||
|
@ -77,30 +79,73 @@ where
|
||||||
{
|
{
|
||||||
assert_compatible_spmm_dims!(c, a, b);
|
assert_compatible_spmm_dims!(c, a, b);
|
||||||
|
|
||||||
use Op::{NoOp, Transpose};
|
use Op::NoOp;
|
||||||
|
|
||||||
match (&a, &b) {
|
match (&a, &b) {
|
||||||
(NoOp(ref a), NoOp(ref b)) => spmm_cs_prealloc(beta, &mut c.cs, alpha, &a.cs, &b.cs),
|
(NoOp(ref a), NoOp(ref b)) => spmm_cs_prealloc(beta, &mut c.cs, alpha, &a.cs, &b.cs),
|
||||||
_ => {
|
_ => spmm_csr_transposed(beta, c, alpha, a, b, spmm_csr_prealloc),
|
||||||
// Currently we handle transposition by explicitly precomputing transposed matrices
|
|
||||||
// and calling the operation again without transposition
|
|
||||||
// TODO: At least use workspaces to allow control of allocations. Maybe
|
|
||||||
// consider implementing certain patterns (like A^T * B) explicitly
|
|
||||||
let a_ref: &CsrMatrix<T> = a.inner_ref();
|
|
||||||
let b_ref: &CsrMatrix<T> = b.inner_ref();
|
|
||||||
let (a, b) = {
|
|
||||||
use Cow::*;
|
|
||||||
match (&a, &b) {
|
|
||||||
(NoOp(_), NoOp(_)) => unreachable!(),
|
|
||||||
(Transpose(ref a), NoOp(_)) => (Owned(a.transpose()), Borrowed(b_ref)),
|
|
||||||
(NoOp(_), Transpose(ref b)) => (Borrowed(a_ref), Owned(b.transpose())),
|
|
||||||
(Transpose(ref a), Transpose(ref b)) => {
|
|
||||||
(Owned(a.transpose()), Owned(b.transpose()))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
spmm_csr_prealloc(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Faster sparse-sparse matrix multiplication, `C <- beta * C + alpha * op(A) * op(B)`.
|
||||||
|
/// This will not return an error even if the patterns don't match.
|
||||||
|
/// Should be used for situations where pattern creation immediately preceeds multiplication.
|
||||||
|
///
|
||||||
|
/// Panics if the dimensions of the matrices involved are not compatible with the expression.
|
||||||
|
pub fn spmm_csr_prealloc_unchecked<T>(
|
||||||
|
beta: T,
|
||||||
|
c: &mut CsrMatrix<T>,
|
||||||
|
alpha: T,
|
||||||
|
a: Op<&CsrMatrix<T>>,
|
||||||
|
b: Op<&CsrMatrix<T>>,
|
||||||
|
) -> Result<(), OperationError>
|
||||||
|
where
|
||||||
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||||
|
{
|
||||||
|
assert_compatible_spmm_dims!(c, a, b);
|
||||||
|
|
||||||
|
use Op::NoOp;
|
||||||
|
|
||||||
|
match (&a, &b) {
|
||||||
|
(NoOp(ref a), NoOp(ref b)) => {
|
||||||
|
spmm_cs_prealloc_unchecked(beta, &mut c.cs, alpha, &a.cs, &b.cs)
|
||||||
|
}
|
||||||
|
_ => spmm_csr_transposed(beta, c, alpha, a, b, spmm_csr_prealloc_unchecked),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn spmm_csr_transposed<T, F>(
|
||||||
|
beta: T,
|
||||||
|
c: &mut CsrMatrix<T>,
|
||||||
|
alpha: T,
|
||||||
|
a: Op<&CsrMatrix<T>>,
|
||||||
|
b: Op<&CsrMatrix<T>>,
|
||||||
|
spmm_kernel: F,
|
||||||
|
) -> Result<(), OperationError>
|
||||||
|
where
|
||||||
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||||
|
F: Fn(
|
||||||
|
T,
|
||||||
|
&mut CsrMatrix<T>,
|
||||||
|
T,
|
||||||
|
Op<&CsrMatrix<T>>,
|
||||||
|
Op<&CsrMatrix<T>>,
|
||||||
|
) -> Result<(), OperationError>,
|
||||||
|
{
|
||||||
|
use Op::{NoOp, Transpose};
|
||||||
|
|
||||||
|
// Currently we handle transposition by explicitly precomputing transposed matrices
|
||||||
|
// and calling the operation again without transposition
|
||||||
|
let a_ref: &CsrMatrix<T> = a.inner_ref();
|
||||||
|
let b_ref: &CsrMatrix<T> = b.inner_ref();
|
||||||
|
let (a, b) = {
|
||||||
|
use Cow::*;
|
||||||
|
match (&a, &b) {
|
||||||
|
(NoOp(_), NoOp(_)) => unreachable!(),
|
||||||
|
(Transpose(ref a), NoOp(_)) => (Owned(a.transpose()), Borrowed(b_ref)),
|
||||||
|
(NoOp(_), Transpose(ref b)) => (Borrowed(a_ref), Owned(b.transpose())),
|
||||||
|
(Transpose(ref a), Transpose(ref b)) => (Owned(a.transpose()), Owned(b.transpose())),
|
||||||
|
}
|
||||||
|
};
|
||||||
|
spmm_kernel(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
||||||
|
}
|
||||||
|
|
|
@ -6,7 +6,8 @@ use nalgebra_sparse::csc::CscMatrix;
|
||||||
use nalgebra_sparse::csr::CsrMatrix;
|
use nalgebra_sparse::csr::CsrMatrix;
|
||||||
use nalgebra_sparse::ops::serial::{
|
use nalgebra_sparse::ops::serial::{
|
||||||
spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_prealloc,
|
spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_prealloc,
|
||||||
spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc, spsolve_csc_lower_triangular,
|
spmm_csc_prealloc_unchecked, spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc,
|
||||||
|
spmm_csr_prealloc_unchecked, spsolve_csc_lower_triangular,
|
||||||
};
|
};
|
||||||
use nalgebra_sparse::ops::Op;
|
use nalgebra_sparse::ops::Op;
|
||||||
use nalgebra_sparse::pattern::SparsityPattern;
|
use nalgebra_sparse::pattern::SparsityPattern;
|
||||||
|
@ -543,6 +544,29 @@ proptest! {
|
||||||
prop_assert_eq!(&c_pattern, c_csr.pattern());
|
prop_assert_eq!(&c_pattern, c_csr.pattern());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn spmm_csr_prealloc_unchecked_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
||||||
|
in spmm_csr_prealloc_args_strategy()
|
||||||
|
) {
|
||||||
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
||||||
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
||||||
|
let mut c_sparse = c.clone();
|
||||||
|
spmm_csr_prealloc_unchecked(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||||
|
|
||||||
|
let mut c_dense = DMatrix::from(&c);
|
||||||
|
let op_a_dense = match a {
|
||||||
|
Op::NoOp(ref a) => DMatrix::from(a),
|
||||||
|
Op::Transpose(ref a) => DMatrix::from(a).transpose(),
|
||||||
|
};
|
||||||
|
let op_b_dense = match b {
|
||||||
|
Op::NoOp(ref b) => DMatrix::from(b),
|
||||||
|
Op::Transpose(ref b) => DMatrix::from(b).transpose(),
|
||||||
|
};
|
||||||
|
c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense;
|
||||||
|
|
||||||
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn spmm_csr_prealloc_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
fn spmm_csr_prealloc_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
||||||
in spmm_csr_prealloc_args_strategy()
|
in spmm_csr_prealloc_args_strategy()
|
||||||
|
@ -705,6 +729,29 @@ proptest! {
|
||||||
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn spmm_csc_prealloc_unchecked_test(SpmmCscArgs { c, beta, alpha, a, b }
|
||||||
|
in spmm_csc_prealloc_args_strategy()
|
||||||
|
) {
|
||||||
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
||||||
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
||||||
|
let mut c_sparse = c.clone();
|
||||||
|
spmm_csc_prealloc_unchecked(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||||
|
|
||||||
|
let mut c_dense = DMatrix::from(&c);
|
||||||
|
let op_a_dense = match a {
|
||||||
|
Op::NoOp(ref a) => DMatrix::from(a),
|
||||||
|
Op::Transpose(ref a) => DMatrix::from(a).transpose(),
|
||||||
|
};
|
||||||
|
let op_b_dense = match b {
|
||||||
|
Op::NoOp(ref b) => DMatrix::from(b),
|
||||||
|
Op::Transpose(ref b) => DMatrix::from(b).transpose(),
|
||||||
|
};
|
||||||
|
c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense;
|
||||||
|
|
||||||
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn spmm_csc_prealloc_panics_on_dim_mismatch(
|
fn spmm_csc_prealloc_panics_on_dim_mismatch(
|
||||||
(alpha, beta, c, a, b)
|
(alpha, beta, c, a, b)
|
||||||
|
|
Loading…
Reference in New Issue