Perturbations to check for convergence into maximum.
This commit is contained in:
parent
ac203fe4fd
commit
d515e4f1be
|
@ -17,7 +17,7 @@ use std::ops::Neg;
|
|||
|
||||
use crate::base::dimension::{U1, U2, U3};
|
||||
use crate::base::storage::Storage;
|
||||
use crate::base::{Matrix2, Matrix3, SMatrix, SVector, Unit, Vector, Vector1, Vector2, Vector3};
|
||||
use crate::base::{Matrix2, Matrix3, SMatrix, SVector, Unit, Vector, Vector1, Vector2, Vector3, UnitVector3};
|
||||
|
||||
use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
|
||||
|
||||
|
@ -706,15 +706,12 @@ where
|
|||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||
/// convergence parameters and starting solution.
|
||||
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
|
||||
#[cfg(feature = "rand-no-std")]
|
||||
pub fn from_matrix(m: &Matrix3<T>) -> Self
|
||||
where
|
||||
T: RealField + crate::Scalar,
|
||||
Standard: Distribution<Rotation3<T>>,
|
||||
T: RealField,
|
||||
{
|
||||
// Starting from a random rotation has almost zero likelihood to end up in a maximum if `m` is already a rotation matrix
|
||||
let random_rotation: Rotation3<T> = rand::thread_rng().gen();
|
||||
Self::from_matrix_eps(m, T::default_epsilon(), 0, random_rotation)
|
||||
Self::from_matrix_eps(m, T::default_epsilon(), 0, Rotation3::identity())
|
||||
}
|
||||
|
||||
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
||||
|
@ -737,6 +734,7 @@ where
|
|||
max_iter = usize::MAX;
|
||||
}
|
||||
|
||||
let mut perturbation_axes = UnitVector3::new_unchecked(Vector3::new(T::one(), T::zero(), T::zero()));
|
||||
let mut rot = guess.into_inner();
|
||||
|
||||
for _ in 0..max_iter {
|
||||
|
@ -752,7 +750,25 @@ where
|
|||
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps.clone()) {
|
||||
rot = Rotation3::from_axis_angle(&axis, angle) * rot;
|
||||
} else {
|
||||
break;
|
||||
// Check if stuck in a maximum w.r.t. the norm (m - rot).norm()
|
||||
let mut perturbed = rot.clone();
|
||||
let norm_squared = (m - &rot).norm_squared();
|
||||
let mut new_norm_squared: T;
|
||||
// Perturb until the new norm is significantly different
|
||||
loop {
|
||||
perturbed *= Rotation3::from_axis_angle(&perturbation_axes, T::frac_pi_8());
|
||||
new_norm_squared = (m - &perturbed).norm_squared();
|
||||
if relative_ne!(norm_squared, new_norm_squared) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// If new norm is larger, it's a minimum
|
||||
if norm_squared < new_norm_squared {
|
||||
break;
|
||||
}
|
||||
// If not, continue from perturbed rotation, but use a different axes for the next perturbation
|
||||
perturbation_axes = UnitVector3::new_unchecked(Vector3::new(perturbation_axes.y.clone(), perturbation_axes.z.clone(), perturbation_axes.x.clone()));
|
||||
rot = perturbed;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue