generalized powf rotation test
This commit is contained in:
parent
e52057b8a5
commit
d4cba8f76f
|
@ -118,7 +118,7 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
|||
pub fn general_pow(self, t:T) -> Self {
|
||||
if D<=1 { return self; }
|
||||
|
||||
println!("r:{}", self);
|
||||
// println!("r:{}", self);
|
||||
|
||||
//taking the (real) schur form is guaranteed to produce a block-diagonal matrix
|
||||
//where each block is either a 1 (if there's no rotation in that axis) or a 2x2
|
||||
|
@ -126,7 +126,7 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
|||
let schur = self.into_inner().schur();
|
||||
let (q, mut d) = schur.unpack();
|
||||
|
||||
println!("q:{}d:{:.3}", q, d);
|
||||
// println!("q:{}d:{:.3}", q, d);
|
||||
|
||||
//go down the diagonal and pow every block
|
||||
for i in 0..(D-1) {
|
||||
|
@ -135,13 +135,13 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
|||
//NOTE: the impl of the schur decomposition always sets the inferior diagonal to 0
|
||||
if !d[(i+1,i)].is_zero() {
|
||||
|
||||
println!("{}", i);
|
||||
// println!("{}", i);
|
||||
|
||||
//convert to a complex num and take the arg()
|
||||
let (c, s) = (d[(i,i)].clone(), d[(i+1,i)].clone());
|
||||
let angle = s.atan2(c);
|
||||
|
||||
println!("{}", angle);
|
||||
// println!("{}", angle);
|
||||
|
||||
//scale the arg and exponentiate back
|
||||
let angle2 = angle * t.clone();
|
||||
|
@ -156,7 +156,7 @@ impl<T:RealField, const D: usize> Rotation<T,D> where
|
|||
}
|
||||
|
||||
}
|
||||
println!("d:{:.3}", d);
|
||||
// println!("d:{:.3}", d);
|
||||
|
||||
let qt = q.transpose(); //avoids an extra clone
|
||||
|
||||
|
|
|
@ -39,6 +39,69 @@ mod proptest_tests {
|
|||
use crate::proptest::*;
|
||||
use proptest::{prop_assert, prop_assert_eq, proptest};
|
||||
|
||||
macro_rules! gen_powf_rotation_test {
|
||||
($(
|
||||
fn $powf_rot_n:ident($($v1:ident in $vec1:ident(), $v2:ident in $vec2:ident()),*);
|
||||
)*) => {
|
||||
proptest!{$(
|
||||
|
||||
#[test]
|
||||
fn $powf_rot_n(
|
||||
$($v1 in $vec1(), $v2 in $vec2(),)*
|
||||
pow in PROPTEST_F64
|
||||
) {
|
||||
|
||||
use nalgebra::*;
|
||||
use num_traits::Zero;
|
||||
|
||||
//make an orthonormal basis
|
||||
let mut basis = [$($v1, $v2),*];
|
||||
Vector::orthonormalize(&mut basis);
|
||||
let [$($v1, $v2),*] = basis;
|
||||
|
||||
//"wedge" the vectors to make an arrary 2-blades representing rotation planes.
|
||||
let mut bivectors = [
|
||||
//Since we start with vector pairs, each bivector is guaranteed to be simple
|
||||
$($v1.transpose().kronecker(&$v2) - $v2.transpose().kronecker(&$v1)),*
|
||||
];
|
||||
|
||||
//condition the bivectors
|
||||
for b in &mut bivectors {
|
||||
if let Some((unit, norm)) = Unit::try_new_and_get(*b, 0.0) {
|
||||
//every component is duplicated once, so there's an extra factor of
|
||||
//sqrt(2) in the norm
|
||||
let mut angle = norm / 2.0f64.sqrt();
|
||||
angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
*b = unit.into_inner() * angle * 2.0f64.sqrt();
|
||||
}
|
||||
}
|
||||
|
||||
let mut bivector = bivectors[0].clone();
|
||||
for i in 1..bivectors.len() {
|
||||
bivector += bivectors[i];
|
||||
}
|
||||
|
||||
let r1 = Rotation::from_matrix_unchecked(bivector.exp()).general_pow(pow);
|
||||
let r2 = Rotation::from_matrix_unchecked((bivector * pow).exp());
|
||||
|
||||
prop_assert!(relative_eq!(r1, r2, epsilon=1e-7));
|
||||
|
||||
}
|
||||
|
||||
)*}
|
||||
}
|
||||
}
|
||||
|
||||
gen_powf_rotation_test!(
|
||||
fn powf_rotation_4(v1 in vector4(), v2 in vector4(), v3 in vector4(), v4 in vector4());
|
||||
fn powf_rotation_5(v1 in vector5(), v2 in vector5(), v3 in vector5(), v4 in vector5());
|
||||
fn powf_rotation_6(
|
||||
v1 in vector6(), v2 in vector6(),
|
||||
v3 in vector6(), v4 in vector6(),
|
||||
v5 in vector6(), v6 in vector6()
|
||||
);
|
||||
);
|
||||
|
||||
proptest! {
|
||||
/*
|
||||
*
|
||||
|
@ -230,78 +293,5 @@ mod proptest_tests {
|
|||
}
|
||||
}
|
||||
|
||||
// macro_rules! gen_pof_rotation_test {
|
||||
// ($(
|
||||
// fn $powf_rot_n:ident($($v1:ident in $vec1:ident(), $v2:ident in $vec2:ident()),*);
|
||||
// )*) => {$
|
||||
//
|
||||
// #[test]
|
||||
// fn $powf_rot_n(
|
||||
// $($v1 in $vec1(), $v2 in $vec2(),)*
|
||||
// pow in PROPTEST_F64
|
||||
// ) {
|
||||
//
|
||||
// }
|
||||
//
|
||||
// )*}
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn powf_rotation_4(
|
||||
v1 in vector4(), v2 in vector4(),
|
||||
v3 in vector4(), v4 in vector4(),
|
||||
pow in PROPTEST_F64
|
||||
) {
|
||||
|
||||
use nalgebra::*;
|
||||
use num_traits::Zero;
|
||||
|
||||
type Rotation4<T> = Rotation<T,4>;
|
||||
|
||||
//make an orthonormal basis
|
||||
let mut basis = [v1,v2,v3,v4];
|
||||
Vector::orthonormalize(&mut basis);
|
||||
let [v1,v2,v3,v4] = basis;
|
||||
|
||||
//"wedge" the vectors to make two 2-blades representing two rotation planes
|
||||
//since we start with vector pairs, each bivector is guaranteed to be simple
|
||||
let mut b1 = v1.transpose().kronecker(&v2) - v2.transpose().kronecker(&v1);
|
||||
let mut b2 = v3.transpose().kronecker(&v4) - v4.transpose().kronecker(&v3);
|
||||
|
||||
//condition b1
|
||||
if let Some((unit, norm)) = Unit::try_new_and_get(b1, 0.0) {
|
||||
//every component is duplicated once, so there's an extra factor or sqrt(2) in the norm
|
||||
//and wrap angle into the correct range
|
||||
let mut angle = norm / 2.0f64.sqrt();
|
||||
angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
b1 = unit.into_inner() * angle * 2.0f64.sqrt();
|
||||
}
|
||||
|
||||
//condition b2
|
||||
if let Some((unit, norm)) = Unit::try_new_and_get(b2, 0.0) {
|
||||
let mut angle = norm / 2.0f64.sqrt();
|
||||
angle = na::wrap(angle, -f64::pi(), f64::pi());
|
||||
b2 = unit.into_inner() * angle * 2.0f64.sqrt();
|
||||
}
|
||||
|
||||
let bivector = b1+b2;
|
||||
|
||||
println!("b:{:.3}", bivector);
|
||||
|
||||
let r1 = Rotation4::from_matrix_unchecked(bivector.exp());
|
||||
let r2 = Rotation4::from_matrix_unchecked((bivector * pow).exp());
|
||||
|
||||
// println!("{}{}", r1, r2);
|
||||
// println!("{}", r1.general_pow(pow));
|
||||
|
||||
prop_assert!(
|
||||
relative_eq!(r1.general_pow(pow), r2, epsilon=1e-7)
|
||||
);
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue