Fix for [a,ca]min/max methods.
Panic on empty matrices, propagate NaN, fix of wrong results, added doc tests
This commit is contained in:
parent
f27d399a93
commit
d21c65f755
136
src/base/ops.rs
136
src/base/ops.rs
|
@ -1,5 +1,5 @@
|
||||||
use num::{One, Signed, Zero};
|
use num::{One, Signed, Zero};
|
||||||
use std::cmp::PartialOrd;
|
use std::cmp::{PartialOrd, Ordering};
|
||||||
use std::iter;
|
use std::iter;
|
||||||
use std::ops::{
|
use std::ops::{
|
||||||
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
|
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
|
||||||
|
@ -868,60 +868,160 @@ where
|
||||||
|
|
||||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn xcmp<N2>(&self, abs: impl Fn(N) -> N2, cmp: impl Fn(N2, N2) -> bool) -> N2
|
fn xcmp<N2>(&self, abs: impl Fn(N) -> N2, ordering: Ordering) -> N2
|
||||||
where N2: Scalar + PartialOrd + Zero {
|
where N2: Scalar + PartialOrd + Zero {
|
||||||
let mut max = N2::zero();
|
assert!(self.len() > 0, "Empty matrix supplied to min/max function.");
|
||||||
|
let mut iter = self.iter();
|
||||||
|
let mut max = abs(iter.next().cloned().unwrap());
|
||||||
|
|
||||||
for e in self.iter() {
|
for e in iter {
|
||||||
let ae = abs(*e);
|
let ae = abs(*e);
|
||||||
|
|
||||||
if cmp(ae, max) {
|
if let Some(ae_ordering) = ae.partial_cmp(&max) {
|
||||||
max = ae;
|
if ae_ordering == ordering {
|
||||||
|
max = ae;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return ae;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
max
|
max
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the absolute value of the component with the largest absolute value.
|
/// Returns the absolute value of the component with the largest absolute value. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::Vector3;
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
|
||||||
|
/// assert!(Vector3::new(1.0, std::f64::NAN, 3.0).amax().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::DMatrix;
|
||||||
|
/// let min = DMatrix::<f64>::zeros(0,1).amax(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn amax(&self) -> N
|
pub fn amax(&self) -> N
|
||||||
where N: PartialOrd + Signed {
|
where N: PartialOrd + Signed {
|
||||||
self.xcmp(|e| e.abs(), |a, b| a > b)
|
self.xcmp(|e| e.abs(), Ordering::Greater)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
/// Returns the the 1-norm of the complex component with the largest 1-norm. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::{Vector3, Complex};
|
||||||
|
/// assert_eq!(Vector3::new(
|
||||||
|
/// Complex::new(-3.0, -2.0),
|
||||||
|
/// Complex::new(1.0, 2.0),
|
||||||
|
/// Complex::new(1.0, 3.0)).camax(), 5.0);
|
||||||
|
/// assert!(Vector3::new(
|
||||||
|
/// Complex::new(-3.0, -2.0),
|
||||||
|
/// Complex::new(1.0, std::f64::NAN),
|
||||||
|
/// Complex::new(1.0, 3.0)).camax().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::{DMatrix, Complex};
|
||||||
|
/// let min = DMatrix::<Complex<f64>>::zeros(0,1).camax(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn camax(&self) -> N::RealField
|
pub fn camax(&self) -> N::RealField
|
||||||
where N: ComplexField {
|
where N: ComplexField {
|
||||||
self.xcmp(|e| e.norm1(), |a, b| a > b)
|
self.xcmp(|e| e.norm1(), Ordering::Greater)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the component with the largest value.
|
/// Returns the component with the largest value. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::Vector3;
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
|
||||||
|
/// assert!(Vector3::new(1.0, std::f64::NAN, 3.0).max().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::DMatrix;
|
||||||
|
/// let min = DMatrix::<f64>::zeros(0,1).max(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn max(&self) -> N
|
pub fn max(&self) -> N
|
||||||
where N: PartialOrd + Signed {
|
where N: PartialOrd + Signed {
|
||||||
self.xcmp(|e| e, |a, b| a > b)
|
self.xcmp(|e| e, Ordering::Greater)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the absolute value of the component with the smallest absolute value.
|
/// Returns the absolute value of the component with the smallest absolute value. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::Vector3;
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
|
||||||
|
/// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
|
||||||
|
/// assert!(Vector3::new(-1.0, std::f64::NAN, 3.0).amin().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::DMatrix;
|
||||||
|
/// let min = DMatrix::<f64>::zeros(0,1).amin(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn amin(&self) -> N
|
pub fn amin(&self) -> N
|
||||||
where N: PartialOrd + Signed {
|
where N: PartialOrd + Signed {
|
||||||
self.xcmp(|e| e.abs(), |a, b| a < b)
|
self.xcmp(|e| e.abs(), Ordering::Less)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
/// Returns the the 1-norm of the complex component with the smallest 1-norm. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::{Vector3, Complex};
|
||||||
|
/// assert_eq!(Vector3::new(
|
||||||
|
/// Complex::new(-3.0, -2.0),
|
||||||
|
/// Complex::new(1.0, 2.0),
|
||||||
|
/// Complex::new(1.0, 3.0)).camin(), 3.0);
|
||||||
|
/// assert!(Vector3::new(
|
||||||
|
/// Complex::new(-3.0, -2.0),
|
||||||
|
/// Complex::new(1.0, std::f64::NAN),
|
||||||
|
/// Complex::new(1.0, 3.0)).camin().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::{DMatrix, Complex};
|
||||||
|
/// let min = DMatrix::<Complex<f64>>::zeros(0,1).camin(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn camin(&self) -> N::RealField
|
pub fn camin(&self) -> N::RealField
|
||||||
where N: ComplexField {
|
where N: ComplexField {
|
||||||
self.xcmp(|e| e.norm1(), |a, b| a < b)
|
self.xcmp(|e| e.norm1(), Ordering::Less)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the component with the smallest value.
|
/// Returns the component with the smallest value. Propagates NaN.
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use nalgebra::Vector3;
|
||||||
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
|
||||||
|
/// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
|
||||||
|
/// assert!(Vector3::new(1.0, std::f64::NAN, 3.0).min().is_nan());
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
/// Panics if the matrix is empty:
|
||||||
|
/// ```should_panic
|
||||||
|
/// # use nalgebra::DMatrix;
|
||||||
|
/// let min = DMatrix::<f64>::zeros(0,1).min(); // panics!
|
||||||
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn min(&self) -> N
|
pub fn min(&self) -> N
|
||||||
where N: PartialOrd + Signed {
|
where N: PartialOrd + Signed {
|
||||||
self.xcmp(|e| e, |a, b| a < b)
|
self.xcmp(|e| e, Ordering::Less)
|
||||||
}
|
}
|
||||||
}
|
}
|
Loading…
Reference in New Issue