remove column is now working

This commit is contained in:
Nestor Demeure 2019-11-03 14:33:35 +01:00 committed by Sébastien Crozet
parent 498c6ef60b
commit cfa7bbdc7c
2 changed files with 72 additions and 4 deletions

View File

@ -211,7 +211,7 @@ where
); );
assert!(j < n, "j needs to be within the bound of the new matrix."); assert!(j < n, "j needs to be within the bound of the new matrix.");
// TODO what is the fastest way to produce the new matrix ? // TODO what is the fastest way to produce the new matrix ?
let chol= self.chol.insert_column(j, N::zero()).insert_row(j, N::zero()); let chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition // TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
unimplemented!(); unimplemented!();
@ -229,12 +229,16 @@ where
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>, DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
{ {
let n = self.chol.nrows(); let n = self.chol.nrows();
assert!(n > 0, "The matrix needs at least one column.");
assert!(j < n, "j needs to be within the bound of the matrix."); assert!(j < n, "j needs to be within the bound of the matrix.");
// TODO what is the fastest way to produce the new matrix ? // TODO what is the fastest way to produce the new matrix ?
let chol= self.chol.remove_column(j).remove_row(j); let mut chol= self.chol.clone().remove_column(j).remove_row(j);
// updates the corner
let mut corner = chol.slice_range_mut(j.., j..);
let colj = self.chol.slice_range(j+1.., j);
rank_one_update_helper(&mut corner, &colj, N::real(N::one()));
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
unimplemented!();
Cholesky { chol } Cholesky { chol }
} }
} }
@ -251,3 +255,48 @@ where
Cholesky::new(self.into_owned()) Cholesky::new(self.into_owned())
} }
} }
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
fn rank_one_update_helper<N, D, S, R2, S2>(chol : &mut Matrix<N, D, D, S>, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField)
where
N: ComplexField, D: DimSub<Dynamic>, R2: Dim,
S: StorageMut<N, D, D>,
S2: Storage<N, R2, U1>,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows();
assert_eq!(
n,
chol.nrows(),
"The input vector must be of the same size as the factorized matrix."
);
let mut x = x.clone_owned();
let mut beta = crate::one::<N::RealField>();
for j in 0..n {
// updates the diagonal
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
let diag2 = diag * diag;
let xj = unsafe { *x.get_unchecked(j) };
let sigma_xj2 = sigma * N::modulus_squared(xj);
let gamma = diag2 * beta + sigma_xj2;
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
beta += sigma_xj2 / diag2;
// updates the terms of L
let mut xjplus = x.rows_range_mut(j + 1..);
let mut col_j = chol.slice_range_mut(j + 1.., j);
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
if gamma != crate::zero::<N::RealField>() {
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
col_j.axpy(
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
&xjplus,
N::from_real(new_diag / diag),
);
}
}
}

View File

@ -98,6 +98,25 @@ macro_rules! gen_tests(
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7) relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
} }
fn cholesky_remove_column(n: usize) -> bool {
let n = n.max(1).min(5);
let j = random::<usize>() % n;
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
// remove column from cholesky decomposition and rebuild m
let chol = m.clone().cholesky().unwrap().remove_column(j);
let m_chol_updated = chol.l() * chol.l().adjoint();
// remove column from m
let m_updated = m.remove_column(j).remove_row(j);
println!("n={} j={}", n, j);
println!("chol:{}", m_chol_updated);
println!("m up:{}", m_updated);
relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)
}
} }
} }
} }