Add all the missing docs.
This commit is contained in:
parent
fc24db8ff3
commit
ce8879c37a
|
@ -11,7 +11,7 @@ if [ -z "$NO_STD" ]; then
|
|||
cargo build --verbose -p nalgebra --features "serde-serialize";
|
||||
cargo build --verbose -p nalgebra --features "abomonation-serialize";
|
||||
cargo build --verbose -p nalgebra --features "debug";
|
||||
cargo build --verbose -p nalgebra --features "debug arbitrary mint serde-serialize abomonation-serialize";
|
||||
cargo build --verbose -p nalgebra --all-features
|
||||
else
|
||||
cargo build -p nalgebra-lapack;
|
||||
fi
|
||||
|
|
|
@ -10,12 +10,14 @@ use Real;
|
|||
struct MatrixMarketParser;
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file at the given path, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market<N: Real, P: AsRef<Path>>(path: P) -> Option<CsMatrix<N>> {
|
||||
let file = fs::read_to_string(path).ok()?;
|
||||
cs_matrix_from_matrix_market_str(&file)
|
||||
}
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file described by the given string, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market_str<N: Real>(data: &str) -> Option<CsMatrix<N>> {
|
||||
let file = MatrixMarketParser::parse(Rule::Document, data)
|
||||
.unwrap()
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
pub use self::matrix_market::*;
|
||||
//! Parsers for various matrix formats.
|
||||
|
||||
pub use self::matrix_market::{cs_matrix_from_matrix_market, cs_matrix_from_matrix_market_str};
|
||||
|
||||
mod matrix_market;
|
||||
|
|
|
@ -1,17 +1,14 @@
|
|||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use alga::general::ClosedAdd;
|
||||
use num::Zero;
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::ops::Range;
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::cs_utils;
|
||||
use storage::{Storage, StorageMut};
|
||||
use {
|
||||
DVector, DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, MatrixVec, Real, Scalar, Vector,
|
||||
VectorN, U1,
|
||||
DefaultAllocator, Dim, Dynamic, Scalar, Vector, VectorN, U1
|
||||
};
|
||||
|
||||
pub struct ColumnEntries<'a, N> {
|
||||
|
@ -47,38 +44,66 @@ impl<'a, N: Copy> Iterator for ColumnEntries<'a, N> {
|
|||
|
||||
// FIXME: this structure exists for now only because impl trait
|
||||
// cannot be used for trait method return types.
|
||||
/// Trait for iterable compressed-column matrix storage.
|
||||
pub trait CsStorageIter<'a, N, R, C = U1> {
|
||||
/// Iterator through all the rows of a specific columns.
|
||||
///
|
||||
/// The elements are given as a tuple (row_index, value).
|
||||
type ColumnEntries: Iterator<Item = (usize, N)>;
|
||||
/// Iterator through the row indices of a specific column.
|
||||
type ColumnRowIndices: Iterator<Item = usize>;
|
||||
|
||||
/// Iterates through all the row indices of the j-th column.
|
||||
fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices;
|
||||
#[inline(always)]
|
||||
/// Iterates through all the entries of the j-th column.
|
||||
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries;
|
||||
}
|
||||
|
||||
/// Trait for mutably iterable compressed-column sparse matrix storage.
|
||||
pub trait CsStorageIterMut<'a, N: 'a, R, C = U1> {
|
||||
/// Mutable iterator through all the values of the sparse matrix.
|
||||
type ValuesMut: Iterator<Item = &'a mut N>;
|
||||
/// Mutable iterator through all the rows of a specific columns.
|
||||
///
|
||||
/// The elements are given as a tuple (row_index, value).
|
||||
type ColumnEntriesMut: Iterator<Item = (usize, &'a mut N)>;
|
||||
|
||||
/// A mutable iterator through the values buffer of the sparse matrix.
|
||||
fn values_mut(&'a mut self) -> Self::ValuesMut;
|
||||
/// Iterates mutably through all the entries of the j-th column.
|
||||
fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut;
|
||||
}
|
||||
|
||||
/// Trait for compressed column sparse matrix storage.
|
||||
pub trait CsStorage<N, R, C = U1>: for<'a> CsStorageIter<'a, N, R, C> {
|
||||
/// The shape of the stored matrix.
|
||||
fn shape(&self) -> (R, C);
|
||||
/// Retrieve the i-th row index of the underlying row index buffer.
|
||||
///
|
||||
/// No bound-checking is performed.
|
||||
unsafe fn row_index_unchecked(&self, i: usize) -> usize;
|
||||
/// The i-th value on the contiguous value buffer of this storage.
|
||||
///
|
||||
/// No bound-checking is performed.
|
||||
unsafe fn get_value_unchecked(&self, i: usize) -> &N;
|
||||
/// The i-th value on the contiguous value buffer of this storage.
|
||||
fn get_value(&self, i: usize) -> &N;
|
||||
/// Retrieve the i-th row index of the underlying row index buffer.
|
||||
fn row_index(&self, i: usize) -> usize;
|
||||
/// The value indices for the `i`-th column.
|
||||
fn column_range(&self, i: usize) -> Range<usize>;
|
||||
/// The size of the value buffer (i.e. the entries known as possibly being non-zero).
|
||||
fn len(&self) -> usize;
|
||||
}
|
||||
|
||||
/// Trait for compressed column sparse matrix mutable storage.
|
||||
pub trait CsStorageMut<N, R, C = U1>:
|
||||
CsStorage<N, R, C> + for<'a> CsStorageIterMut<'a, N, R, C>
|
||||
{
|
||||
}
|
||||
|
||||
/// A storage of column-compressed sparse matrix based on a Vec.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct CsVecStorage<N: Scalar, R: Dim, C: Dim>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
|
@ -92,12 +117,17 @@ where DefaultAllocator: Allocator<usize, C>
|
|||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
/// The value buffer of this storage.
|
||||
pub fn values(&self) -> &[N] {
|
||||
&self.vals
|
||||
}
|
||||
|
||||
/// The column shifts buffer.
|
||||
pub fn p(&self) -> &[usize] {
|
||||
self.p.as_slice()
|
||||
}
|
||||
|
||||
/// The row index buffers.
|
||||
pub fn i(&self) -> &[usize] {
|
||||
&self.i
|
||||
}
|
||||
|
@ -209,15 +239,18 @@ pub struct CsMatrix<
|
|||
C: Dim = Dynamic,
|
||||
S: CsStorage<N, R, C> = CsVecStorage<N, R, C>,
|
||||
> {
|
||||
pub data: S,
|
||||
pub(crate) data: S,
|
||||
_phantoms: PhantomData<(N, R, C)>,
|
||||
}
|
||||
|
||||
/// A column compressed sparse vector.
|
||||
pub type CsVector<N, R = Dynamic, S = CsVecStorage<N, R, U1>> = CsMatrix<N, R, U1, S>;
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
/// Creates a new compressed sparse column matrix with the specified dimension and
|
||||
/// `nvals` possible non-zero values.
|
||||
pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self {
|
||||
let mut i = Vec::with_capacity(nvals);
|
||||
unsafe {
|
||||
|
@ -242,7 +275,8 @@ where DefaultAllocator: Allocator<usize, C>
|
|||
}
|
||||
}
|
||||
|
||||
pub fn from_parts_generic(
|
||||
/*
|
||||
pub(crate) fn from_parts_generic(
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
p: VectorN<usize, C>,
|
||||
|
@ -285,11 +319,12 @@ where DefaultAllocator: Allocator<usize, C>
|
|||
res.dedup();
|
||||
|
||||
res
|
||||
}
|
||||
}*/
|
||||
}
|
||||
|
||||
/*
|
||||
impl<N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
||||
pub fn from_parts(
|
||||
pub(crate) fn from_parts(
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
p: Vec<usize>,
|
||||
|
@ -299,36 +334,42 @@ impl<N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
|||
{
|
||||
let nrows = Dynamic::new(nrows);
|
||||
let ncols = Dynamic::new(ncols);
|
||||
let p = DVector::from_data(MatrixVec::new(ncols, U1, p));
|
||||
let p = DVector::from_data(VecStorage::new(ncols, U1, p));
|
||||
Self::from_parts_generic(nrows, ncols, p, i, vals)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
pub fn from_data(data: S) -> Self {
|
||||
pub(crate) fn from_data(data: S) -> Self {
|
||||
CsMatrix {
|
||||
data,
|
||||
_phantoms: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// The size of the data buffer.
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// The number of rows of this matrix.
|
||||
pub fn nrows(&self) -> usize {
|
||||
self.data.shape().0.value()
|
||||
}
|
||||
|
||||
/// The number of rows of this matrix.
|
||||
pub fn ncols(&self) -> usize {
|
||||
self.data.shape().1.value()
|
||||
}
|
||||
|
||||
/// The shape of this matrix.
|
||||
pub fn shape(&self) -> (usize, usize) {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
(nrows.value(), ncols.value())
|
||||
}
|
||||
|
||||
/// Whether this matrix is square or not.
|
||||
pub fn is_square(&self) -> bool {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
nrows.value() == ncols.value()
|
||||
|
@ -360,6 +401,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
|||
true
|
||||
}
|
||||
|
||||
/// Computes the transpose of this sparse matrix.
|
||||
pub fn transpose(&self) -> CsMatrix<N, C, R>
|
||||
where DefaultAllocator: Allocator<usize, R> {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
@ -392,6 +434,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
|||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorageMut<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
/// Iterator through all the mutable values of this sparse matrix.
|
||||
#[inline]
|
||||
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut N> {
|
||||
self.data.values_mut()
|
||||
|
|
|
@ -1,17 +1,11 @@
|
|||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsVecStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsVecStorage};
|
||||
use {DefaultAllocator, Dim, Real, VectorN, U1};
|
||||
|
||||
/// The cholesky decomposition of a column compressed sparse matrix.
|
||||
pub struct CsCholesky<N: Real, D: Dim>
|
||||
where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
||||
{
|
||||
|
@ -68,6 +62,7 @@ where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
|||
}
|
||||
}
|
||||
|
||||
/// The lower-triangular matrix of the cholesky decomposition.
|
||||
pub fn l(&self) -> Option<&CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(&self.l)
|
||||
|
@ -76,6 +71,7 @@ where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
|||
}
|
||||
}
|
||||
|
||||
/// Extracts the lower-triangular matrix of the cholesky decomposition.
|
||||
pub fn unwrap_l(self) -> Option<CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(self.l)
|
||||
|
@ -84,6 +80,8 @@ where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
|||
}
|
||||
}
|
||||
|
||||
/// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the
|
||||
/// one used to initialize `self`, but with different non-zero values provided by `values`.
|
||||
pub fn decompose_left_looking(&mut self, values: &[N]) -> bool {
|
||||
assert!(
|
||||
values.len() >= self.original_i.len(),
|
||||
|
@ -152,7 +150,8 @@ where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
|||
true
|
||||
}
|
||||
|
||||
// Performs the numerical Cholesky decomposition given the set of numerical values.
|
||||
/// Perform a numerical up-looking cholesky decomposition of a matrix with the same structure as the
|
||||
/// one used to initialize `self`, but with different non-zero values provided by `values`.
|
||||
pub fn decompose_up_looking(&mut self, values: &[N]) -> bool {
|
||||
assert!(
|
||||
values.len() >= self.original_i.len(),
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
use alga::general::ClosedAdd;
|
||||
use num::Zero;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::cs_utils;
|
||||
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
use sparse::{CsMatrix, CsStorage};
|
||||
use storage::Storage;
|
||||
use {DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Scalar};
|
||||
|
||||
impl<'a, N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
||||
// FIXME: implement for dimensions other than Dynamic too.
|
||||
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
||||
pub fn from_triplet(
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
|
@ -29,6 +24,7 @@ impl<'a, N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
|||
impl<'a, N: Scalar + Zero + ClosedAdd, R: Dim, C: Dim> CsMatrix<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C> + Allocator<N, R>
|
||||
{
|
||||
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
||||
pub fn from_triplet_generic(
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
|
|
|
@ -1,15 +1,12 @@
|
|||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
use std::ops::{Add, Mul};
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use constraint::{AreMultipliable, DimEq, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageMut, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
use storage::StorageMut;
|
||||
use {DefaultAllocator, Dim, Scalar, Vector, VectorN, U1};
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
fn scatter<R2: Dim, C2: Dim>(
|
||||
|
@ -80,6 +77,7 @@ impl<N: Scalar, R, S> CsVector<N, R, S> {
|
|||
*/
|
||||
|
||||
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
|
||||
/// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation.
|
||||
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
|
||||
where
|
||||
S2: CsStorage<N, D2>,
|
||||
|
|
|
@ -1,17 +1,11 @@
|
|||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, VectorN, U1};
|
||||
|
||||
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||
/// Solve a lower-triangular system with a dense right-hand-side.
|
||||
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
|
@ -29,6 +23,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with `self` transposed and a dense right-hand-side.
|
||||
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
|
@ -46,6 +41,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Solve in-place a lower-triangular system with a dense right-hand-side.
|
||||
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
|
@ -90,6 +86,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
true
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with `self` transposed and a dense right-hand-side.
|
||||
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
|
@ -135,6 +132,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
true
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with a sparse right-hand-side.
|
||||
pub fn solve_lower_triangular_cs<D2: Dim, S2>(
|
||||
&self,
|
||||
b: &CsVector<N, D2, S2>,
|
||||
|
@ -195,6 +193,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
Some(result)
|
||||
}
|
||||
|
||||
/*
|
||||
// Computes the reachable, post-ordered, nodes from `b`.
|
||||
fn lower_triangular_reach_postordered<D2: Dim, S2>(
|
||||
&self,
|
||||
|
@ -240,6 +239,7 @@ impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|||
xi.push(j)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// Computes the nodes reachable from `b` in an arbitrary order.
|
||||
fn lower_triangular_reach<D2: Dim, S2>(&self, b: &CsVector<N, D2, S2>, xi: &mut Vec<usize>)
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
//! Sparse matrices.
|
||||
|
||||
pub use self::cs_matrix::{
|
||||
CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsStorageMut, CsVecStorage, CsVector,
|
||||
};
|
||||
|
@ -8,4 +10,4 @@ mod cs_matrix_cholesky;
|
|||
mod cs_matrix_conversion;
|
||||
mod cs_matrix_ops;
|
||||
mod cs_matrix_solve;
|
||||
pub mod cs_utils;
|
||||
pub(crate) mod cs_utils;
|
||||
|
|
Loading…
Reference in New Issue