Add statistics functions: sum, variance, mean.

This commit is contained in:
sebcrozet 2018-12-09 11:21:15 +01:00
parent 570611a59b
commit cc2a70664d

163
src/base/statistics.rs Normal file
View File

@ -0,0 +1,163 @@
use ::{Real, Dim, Matrix, VectorN, RowVectorN, DefaultAllocator, U1, VectorSliceN};
use storage::Storage;
use allocator::Allocator;
impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
#[inline]
pub fn compress_rows(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
let ncols = self.data.shape().1;
let mut res = unsafe { RowVectorN::new_uninitialized_generic(U1, ncols) };
for i in 0..ncols.value() {
// FIXME: avoid bound checking of column.
unsafe { *res.get_unchecked_mut(0, i) = f(self.column(i)); }
}
res
}
#[inline]
pub fn compress_rows_tr(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
let ncols = self.data.shape().1;
let mut res = unsafe { VectorN::new_uninitialized_generic(ncols, U1) };
for i in 0..ncols.value() {
// FIXME: avoid bound checking of column.
unsafe { *res.vget_unchecked_mut(i) = f(self.column(i)); }
}
res
}
#[inline]
pub fn compress_columns(&self, init: VectorN<N, R>, f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>)) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
let mut res = init;
for i in 0..self.ncols() {
f(&mut res, self.column(i))
}
res
}
}
impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/*
*
* Sum computation.
*
*/
#[inline]
pub fn sum(&self) -> N {
self.iter().cloned().fold(N::zero(), |a, b| a + b)
}
#[inline]
pub fn row_sum(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.sum())
}
#[inline]
pub fn row_sum_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.sum())
}
#[inline]
pub fn column_sum(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
let nrows = self.data.shape().0;
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
out.axpy(N::one(), &col, N::one())
})
}
/*
*
* Variance computation.
*
*/
#[inline]
pub fn variance(&self) -> N {
if self.len() == 0 {
N::zero()
} else {
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b * b, a.1 + b));
let denom = N::one() / ::convert::<_, N>(self.len() as f64);
val.0 * denom - (val.1 * denom) * (val.1 * denom)
}
}
#[inline]
pub fn row_variance(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.variance())
}
#[inline]
pub fn row_variance_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.variance())
}
#[inline]
pub fn column_variance(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
let (nrows, ncols) = self.data.shape();
let mut mean = self.column_mean();
mean.apply(|e| -(e * e));
let denom = N::one() / ::convert::<_, N>(ncols.value() as f64);
self.compress_columns(mean, |out, col| {
for i in 0..nrows.value() {
unsafe {
let val = col.vget_unchecked(i);
*out.vget_unchecked_mut(i) += denom * *val * *val
}
}
})
}
/*
*
* Mean computation.
*
*/
#[inline]
pub fn mean(&self) -> N {
if self.len() == 0 {
N::zero()
} else {
self.sum() / ::convert(self.len() as f64)
}
}
#[inline]
pub fn row_mean(&self) -> RowVectorN<N, C>
where DefaultAllocator: Allocator<N, U1, C> {
self.compress_rows(|col| col.mean())
}
#[inline]
pub fn row_mean_tr(&self) -> VectorN<N, C>
where DefaultAllocator: Allocator<N, C> {
self.compress_rows_tr(|col| col.mean())
}
#[inline]
pub fn column_mean(&self) -> VectorN<N, R>
where DefaultAllocator: Allocator<N, R> {
let (nrows, ncols) = self.data.shape();
let denom = N::one() / ::convert::<_, N>(ncols.value() as f64);
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
out.axpy(denom, &col, N::one())
})
}
}