add pseudo inverse for symmetric eigenvalue decomposition

This commit is contained in:
Lishen 2024-05-04 22:35:09 +03:00
parent 9bc7f8b0d8
commit c827c7f455
2 changed files with 83 additions and 0 deletions

View File

@ -8,6 +8,7 @@ use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix2, OMatrix, OVector, SquareMatrix, Vector2}; use crate::base::{DefaultAllocator, Matrix2, OMatrix, OVector, SquareMatrix, Vector2};
use crate::dimension::{Dim, DimDiff, DimSub, U1}; use crate::dimension::{Dim, DimDiff, DimSub, U1};
use crate::storage::Storage; use crate::storage::Storage;
use crate::RowOVector;
use simba::scalar::ComplexField; use simba::scalar::ComplexField;
use crate::linalg::givens::GivensRotation; use crate::linalg::givens::GivensRotation;
@ -295,6 +296,71 @@ where
u_t.adjoint_mut(); u_t.adjoint_mut();
&self.eigenvectors * u_t &self.eigenvectors * u_t
} }
/// Computes the pseudo-inverse of this matrix.
///
/// Calculate a generalized inverse of a complex Hermitian/real symmetric
/// matrix using its eigenvalue decomposition and including all eigenvalues
/// with 'large' absolute value.
///
/// # Arguments
///
/// * `atol` absolute threshold term, if `None` provided value is 0.
/// * `rtol` relative threshold term, if `None` provided value is `N * eps` where
/// `eps` is the machine precision value of the `T::RealField`.
#[must_use]
pub fn pseudo_inverse(
&self,
atol: Option<T::RealField>,
rtol: Option<T::RealField>,
) -> OMatrix<T, D, D>
where
DefaultAllocator: Allocator<usize, D>,
DefaultAllocator: Allocator<T, U1, D>,
{
let u = &self.eigenvectors;
let s = &self.eigenvalues;
let max_s = s.camax();
let atol = atol.unwrap_or(T::RealField::zero());
let rtol =
rtol.unwrap_or(T::RealField::default_epsilon() * crate::convert(u.ncols() as f64));
assert!(
rtol >= T::RealField::zero() && atol >= T::RealField::zero(),
"atol and rtol values must be positive.",
);
let val = atol + max_s * rtol;
let mut above_cutoff = OVector::<usize, D>::zeros_generic(u.shape_generic().0, U1);
let mut r_take = 0;
for i in 0..s.len() {
if s[i].clone().abs() > val {
above_cutoff[r_take] = i;
r_take += 1;
}
}
let psigma_diag = RowOVector::<T, D>::from_fn_generic(U1, u.shape_generic().0, |_, j| {
if j < r_take {
T::from_real(s[above_cutoff[j]].clone().recip())
} else {
T::zero()
}
});
let u = OMatrix::<T, D, D>::from_fn_generic(
u.shape_generic().0,
u.shape_generic().1,
|i, j| {
if j < r_take {
u[(i, above_cutoff[j])].clone()
} else {
T::zero()
}
},
);
let mut up = u.clone();
for i in 0..u.nrows() {
up.row_mut(i).component_mul_assign(&psigma_diag);
}
up * u.conjugate().transpose()
}
} }
/// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing /// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing

View File

@ -62,6 +62,23 @@ mod proptest_tests {
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
} }
#[test]
fn symmetric_eigen_pseudo_inverse(m in dmatrix_($scalar)) {
let eig = m.clone().symmetric_eigen();
let pinv = eig.pseudo_inverse(None, None);
prop_assert!(relative_eq!(
m,
&m*&pinv*&m,
epsilon = 1.0e-5
));
prop_assert!(relative_eq!(
pinv,
&pinv*m*&pinv,
epsilon = 1.0e-5
));
}
} }
} }
} }