nalgebra-lapack: add schur decomposition.
This commit is contained in:
parent
a7bce9cf3f
commit
c616c3ddef
|
@ -21,16 +21,18 @@ mod cholesky;
|
||||||
mod lu;
|
mod lu;
|
||||||
mod qr;
|
mod qr;
|
||||||
mod hessenberg;
|
mod hessenberg;
|
||||||
|
mod schur;
|
||||||
|
|
||||||
use num_complex::Complex;
|
use num_complex::Complex;
|
||||||
|
|
||||||
pub use self::svd::SVD;
|
pub use self::svd::SVD;
|
||||||
pub use self::cholesky::{Cholesky, CholeskyScalar};
|
pub use self::cholesky::{Cholesky, CholeskyScalar};
|
||||||
pub use self::lu::{LU, LUScalar};
|
pub use self::lu::{LU, LUScalar};
|
||||||
pub use self::eigen::RealEigensystem;
|
pub use self::eigen::Eigen;
|
||||||
pub use self::symmetric_eigen::SymmetricEigen;
|
pub use self::symmetric_eigen::SymmetricEigen;
|
||||||
pub use self::qr::QR;
|
pub use self::qr::QR;
|
||||||
pub use self::hessenberg::Hessenberg;
|
pub use self::hessenberg::Hessenberg;
|
||||||
|
pub use self::schur::RealSchur;
|
||||||
|
|
||||||
|
|
||||||
trait ComplexHelper {
|
trait ComplexHelper {
|
||||||
|
|
|
@ -0,0 +1,191 @@
|
||||||
|
use num::Zero;
|
||||||
|
use num_complex::Complex;
|
||||||
|
|
||||||
|
use alga::general::Real;
|
||||||
|
|
||||||
|
use ::ComplexHelper;
|
||||||
|
use na::{Scalar, DefaultAllocator, Matrix, VectorN, MatrixN};
|
||||||
|
use na::dimension::{Dim, U1};
|
||||||
|
use na::storage::Storage;
|
||||||
|
use na::allocator::Allocator;
|
||||||
|
|
||||||
|
use lapack::fortran as interface;
|
||||||
|
|
||||||
|
/// Eigendecomposition of a real square matrix with real eigenvalues.
|
||||||
|
pub struct RealSchur<N: Scalar, D: Dim>
|
||||||
|
where DefaultAllocator: Allocator<N, D> +
|
||||||
|
Allocator<N, D, D> {
|
||||||
|
|
||||||
|
re: VectorN<N, D>,
|
||||||
|
im: VectorN<N, D>,
|
||||||
|
t: MatrixN<N, D>,
|
||||||
|
q: MatrixN<N, D>
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
impl<N: EigenScalar + Real, D: Dim> RealSchur<N, D>
|
||||||
|
where DefaultAllocator: Allocator<N, D, D> +
|
||||||
|
Allocator<N, D> {
|
||||||
|
/// Computes the eigenvalues and real Schur foorm of the matrix `m`.
|
||||||
|
///
|
||||||
|
/// Panics if the method did not converge.
|
||||||
|
pub fn new(m: MatrixN<N, D>) -> Self {
|
||||||
|
Self::try_new(m).expect("RealSchur decomposition: convergence failed.")
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the eigenvalues and real Schur foorm of the matrix `m`.
|
||||||
|
///
|
||||||
|
/// Returns `None` if the method did not converge.
|
||||||
|
pub fn try_new(mut m: MatrixN<N, D>) -> Option<Self> {
|
||||||
|
assert!(m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix.");
|
||||||
|
|
||||||
|
let (nrows, ncols) = m.data.shape();
|
||||||
|
let n = nrows.value();
|
||||||
|
|
||||||
|
let lda = n as i32;
|
||||||
|
|
||||||
|
let mut info = 0;
|
||||||
|
|
||||||
|
let mut wr = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
||||||
|
let mut wi = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
||||||
|
let mut q = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) };
|
||||||
|
// Placeholders:
|
||||||
|
let mut bwork = [ 0i32 ];
|
||||||
|
let mut unused = 0;
|
||||||
|
|
||||||
|
let lwork = N::xgees_work_size(b'V', b'N', n as i32, m.as_mut_slice(), lda, &mut unused,
|
||||||
|
wr.as_mut_slice(), wi.as_mut_slice(), q.as_mut_slice(), n as i32,
|
||||||
|
&mut bwork, &mut info);
|
||||||
|
lapack_check!(info);
|
||||||
|
|
||||||
|
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
|
||||||
|
|
||||||
|
N::xgees(b'V', b'N', n as i32, m.as_mut_slice(), lda, &mut unused,
|
||||||
|
wr.as_mut_slice(), wi.as_mut_slice(), q.as_mut_slice(),
|
||||||
|
n as i32, &mut work, lwork, &mut bwork, &mut info);
|
||||||
|
lapack_check!(info);
|
||||||
|
|
||||||
|
Some(RealSchur { re: wr, im: wi, t: m, q: q })
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the
|
||||||
|
/// decomposed matrix equals `Q * T * Q.transpose()`.
|
||||||
|
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
|
||||||
|
(self.q, self.t)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the real eigenvalues of the decomposed matrix.
|
||||||
|
///
|
||||||
|
/// Return `None` if some eigenvalues are complex.
|
||||||
|
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
||||||
|
if self.im.iter().all(|e| e.is_zero()) {
|
||||||
|
Some(self.re.clone())
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the complex eigenvalues of the decomposed matrix.
|
||||||
|
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
|
||||||
|
where DefaultAllocator: Allocator<Complex<N>, D> {
|
||||||
|
|
||||||
|
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
||||||
|
|
||||||
|
for i in 0 .. out.len() {
|
||||||
|
out[i] = Complex::new(self.re[i], self.im[i])
|
||||||
|
}
|
||||||
|
|
||||||
|
out
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
*
|
||||||
|
* Lapack functions dispatch.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
pub trait EigenScalar: Scalar {
|
||||||
|
fn xgees(jobvs: u8,
|
||||||
|
sort: u8,
|
||||||
|
// select: ???
|
||||||
|
n: i32,
|
||||||
|
a: &mut [Self],
|
||||||
|
lda: i32,
|
||||||
|
sdim: &mut i32,
|
||||||
|
wr: &mut [Self],
|
||||||
|
wi: &mut [Self],
|
||||||
|
vs: &mut [Self],
|
||||||
|
ldvs: i32,
|
||||||
|
work: &mut [Self],
|
||||||
|
lwork: i32,
|
||||||
|
bwork: &mut [i32],
|
||||||
|
info: &mut i32);
|
||||||
|
|
||||||
|
fn xgees_work_size(jobvs: u8,
|
||||||
|
sort: u8,
|
||||||
|
// select: ???
|
||||||
|
n: i32,
|
||||||
|
a: &mut [Self],
|
||||||
|
lda: i32,
|
||||||
|
sdim: &mut i32,
|
||||||
|
wr: &mut [Self],
|
||||||
|
wi: &mut [Self],
|
||||||
|
vs: &mut [Self],
|
||||||
|
ldvs: i32,
|
||||||
|
bwork: &mut [i32],
|
||||||
|
info: &mut i32)
|
||||||
|
-> i32;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! real_eigensystem_scalar_impl (
|
||||||
|
($N: ty, $xgees: path) => (
|
||||||
|
impl EigenScalar for $N {
|
||||||
|
#[inline]
|
||||||
|
fn xgees(jobvs: u8,
|
||||||
|
sort: u8,
|
||||||
|
// select: ???
|
||||||
|
n: i32,
|
||||||
|
a: &mut [$N],
|
||||||
|
lda: i32,
|
||||||
|
sdim: &mut i32,
|
||||||
|
wr: &mut [$N],
|
||||||
|
wi: &mut [$N],
|
||||||
|
vs: &mut [$N],
|
||||||
|
ldvs: i32,
|
||||||
|
work: &mut [$N],
|
||||||
|
lwork: i32,
|
||||||
|
bwork: &mut [i32],
|
||||||
|
info: &mut i32) {
|
||||||
|
$xgees(jobvs, sort, None, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork, bwork, info);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn xgees_work_size(jobvs: u8,
|
||||||
|
sort: u8,
|
||||||
|
// select: ???
|
||||||
|
n: i32,
|
||||||
|
a: &mut [$N],
|
||||||
|
lda: i32,
|
||||||
|
sdim: &mut i32,
|
||||||
|
wr: &mut [$N],
|
||||||
|
wi: &mut [$N],
|
||||||
|
vs: &mut [$N],
|
||||||
|
ldvs: i32,
|
||||||
|
bwork: &mut [i32],
|
||||||
|
info: &mut i32)
|
||||||
|
-> i32 {
|
||||||
|
let mut work = [ Zero::zero() ];
|
||||||
|
let lwork = -1 as i32;
|
||||||
|
|
||||||
|
$xgees(jobvs, sort, None, n, a, lda, sdim, wr, wi, vs, ldvs, &mut work, lwork, bwork, info);
|
||||||
|
ComplexHelper::real_part(work[0]) as i32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
);
|
||||||
|
|
||||||
|
real_eigensystem_scalar_impl!(f32, interface::sgees);
|
||||||
|
real_eigensystem_scalar_impl!(f64, interface::dgees);
|
|
@ -4,3 +4,4 @@ mod cholesky;
|
||||||
mod lu;
|
mod lu;
|
||||||
mod qr;
|
mod qr;
|
||||||
mod svd;
|
mod svd;
|
||||||
|
mod real_schur;
|
||||||
|
|
|
@ -0,0 +1,21 @@
|
||||||
|
use std::cmp;
|
||||||
|
use nl::RealSchur;
|
||||||
|
use na::{DMatrix, Matrix4};
|
||||||
|
|
||||||
|
quickcheck! {
|
||||||
|
fn schur(n: usize) -> bool {
|
||||||
|
let n = cmp::max(1, cmp::min(n, 10));
|
||||||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||||||
|
|
||||||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||||||
|
|
||||||
|
relative_eq!(&vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn schur_static(m: Matrix4<f64>) -> bool {
|
||||||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||||||
|
|
||||||
|
relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue