Refactor code for matrices.
This commit is contained in:
parent
cd355dfb30
commit
c54eb562ec
|
@ -1,6 +1,8 @@
|
||||||
use std::num::{One, Zero};
|
use std::num::{One, Zero};
|
||||||
use std::rand::{Rand, Rng, RngUtil};
|
use std::rand::{Rand, Rng, RngUtil};
|
||||||
use std::cmp::ApproxEq;
|
use std::cmp::ApproxEq;
|
||||||
|
use traits::ring::Ring;
|
||||||
|
use traits::division_ring::DivisionRing;
|
||||||
use traits::rlmul::{RMul, LMul};
|
use traits::rlmul::{RMul, LMul};
|
||||||
use traits::dim::Dim;
|
use traits::dim::Dim;
|
||||||
use traits::inv::Inv;
|
use traits::inv::Inv;
|
||||||
|
@ -8,8 +10,7 @@ use traits::transpose::Transpose;
|
||||||
use traits::rotation::{Rotation, Rotate, Rotatable};
|
use traits::rotation::{Rotation, Rotate, Rotatable};
|
||||||
use traits::transformation::{Transform}; // FIXME: implement Transformation and Transformable
|
use traits::transformation::{Transform}; // FIXME: implement Transformation and Transformable
|
||||||
use vec::Vec1;
|
use vec::Vec1;
|
||||||
use dim2::mat2::Mat2;
|
use mat::{Mat2, Mat3};
|
||||||
use dim3::mat3::Mat3;
|
|
||||||
use vec::Vec3;
|
use vec::Vec3;
|
||||||
|
|
||||||
#[deriving(Eq, ToStr)]
|
#[deriving(Eq, ToStr)]
|
||||||
|
@ -22,11 +23,10 @@ pub fn rotmat2<N: Copy + Trigonometric + Neg<N>>(angle: N) -> Rotmat<Mat2<N>>
|
||||||
let sia = angle.sin();
|
let sia = angle.sin();
|
||||||
|
|
||||||
Rotmat
|
Rotmat
|
||||||
{ submat: Mat2::new(copy coa, -sia, copy sia, copy coa) }
|
{ submat: Mat2::new( [ copy coa, -sia, copy sia, copy coa ] ) }
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn rotmat3<N: Copy + Trigonometric + Neg<N> + One + Sub<N, N> + Add<N, N> +
|
pub fn rotmat3<N: Copy + Trigonometric + Ring>
|
||||||
Mul<N, N>>
|
|
||||||
(axis: &Vec3<N>, angle: N) -> Rotmat<Mat3<N>>
|
(axis: &Vec3<N>, angle: N) -> Rotmat<Mat3<N>>
|
||||||
{
|
{
|
||||||
let _1 = One::one::<N>();
|
let _1 = One::one::<N>();
|
||||||
|
@ -41,7 +41,7 @@ pub fn rotmat3<N: Copy + Trigonometric + Neg<N> + One + Sub<N, N> + Add<N, N> +
|
||||||
let sin = angle.sin();
|
let sin = angle.sin();
|
||||||
|
|
||||||
Rotmat {
|
Rotmat {
|
||||||
submat: Mat3::new(
|
submat: Mat3::new( [
|
||||||
(sqx + (_1 - sqx) * cos),
|
(sqx + (_1 - sqx) * cos),
|
||||||
(ux * uy * one_m_cos - uz * sin),
|
(ux * uy * one_m_cos - uz * sin),
|
||||||
(ux * uz * one_m_cos + uy * sin),
|
(ux * uz * one_m_cos + uy * sin),
|
||||||
|
@ -52,16 +52,16 @@ pub fn rotmat3<N: Copy + Trigonometric + Neg<N> + One + Sub<N, N> + Add<N, N> +
|
||||||
|
|
||||||
(ux * uz * one_m_cos - uy * sin),
|
(ux * uz * one_m_cos - uy * sin),
|
||||||
(uy * uz * one_m_cos + ux * sin),
|
(uy * uz * one_m_cos + ux * sin),
|
||||||
(sqz + (_1 - sqz) * cos))
|
(sqz + (_1 - sqz) * cos) ] )
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Div<N, N> + Trigonometric + Neg<N> + Mul<N, N> + Add<N, N> + Copy>
|
impl<N: Trigonometric + DivisionRing + Copy>
|
||||||
Rotation<Vec1<N>> for Rotmat<Mat2<N>>
|
Rotation<Vec1<N>> for Rotmat<Mat2<N>>
|
||||||
{
|
{
|
||||||
#[inline]
|
#[inline]
|
||||||
fn rotation(&self) -> Vec1<N>
|
fn rotation(&self) -> Vec1<N>
|
||||||
{ Vec1::new([-(self.submat.m12 / self.submat.m11).atan()]) }
|
{ Vec1::new([ -(self.submat.at(0, 1) / self.submat.at(0, 0)).atan() ]) }
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn inv_rotation(&self) -> Vec1<N>
|
fn inv_rotation(&self) -> Vec1<N>
|
||||||
|
@ -72,7 +72,7 @@ Rotation<Vec1<N>> for Rotmat<Mat2<N>>
|
||||||
{ *self = self.rotated(rot) }
|
{ *self = self.rotated(rot) }
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Div<N, N> + Trigonometric + Neg<N> + Mul<N, N> + Add<N, N> + Copy>
|
impl<N: Trigonometric + DivisionRing + Copy>
|
||||||
Rotatable<Vec1<N>, Rotmat<Mat2<N>>> for Rotmat<Mat2<N>>
|
Rotatable<Vec1<N>, Rotmat<Mat2<N>>> for Rotmat<Mat2<N>>
|
||||||
{
|
{
|
||||||
#[inline]
|
#[inline]
|
||||||
|
@ -80,8 +80,7 @@ Rotatable<Vec1<N>, Rotmat<Mat2<N>>> for Rotmat<Mat2<N>>
|
||||||
{ rotmat2(copy rot.at[0]) * *self }
|
{ rotmat2(copy rot.at[0]) * *self }
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Div<N, N> + Trigonometric + Neg<N> + Mul<N, N> + Add<N, N> + Copy +
|
impl<N: Copy + Trigonometric + DivisionRing>
|
||||||
One + Sub<N, N>>
|
|
||||||
Rotation<(Vec3<N>, N)> for Rotmat<Mat3<N>>
|
Rotation<(Vec3<N>, N)> for Rotmat<Mat3<N>>
|
||||||
{
|
{
|
||||||
#[inline]
|
#[inline]
|
||||||
|
@ -98,8 +97,7 @@ Rotation<(Vec3<N>, N)> for Rotmat<Mat3<N>>
|
||||||
{ *self = self.rotated(rot) }
|
{ *self = self.rotated(rot) }
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Div<N, N> + Trigonometric + Neg<N> + Mul<N, N> + Add<N, N> + Copy +
|
impl<N: Copy + Trigonometric + DivisionRing>
|
||||||
One + Sub<N, N>>
|
|
||||||
Rotatable<(Vec3<N>, N), Rotmat<Mat3<N>>> for Rotmat<Mat3<N>>
|
Rotatable<(Vec3<N>, N), Rotmat<Mat3<N>>> for Rotmat<Mat3<N>>
|
||||||
{
|
{
|
||||||
#[inline]
|
#[inline]
|
||||||
|
@ -136,8 +134,7 @@ impl<M: RMul<V> + LMul<V>, V> Transform<V> for Rotmat<M>
|
||||||
{ self.inv_rotate(v) }
|
{ self.inv_rotate(v) }
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Copy + Rand + Trigonometric + Neg<N> + One + Sub<N, N> + Add<N, N> +
|
impl<N: Copy + Rand + Trigonometric + Ring>
|
||||||
Mul<N, N>>
|
|
||||||
Rand for Rotmat<Mat3<N>>
|
Rand for Rotmat<Mat3<N>>
|
||||||
{
|
{
|
||||||
#[inline]
|
#[inline]
|
||||||
|
|
137
src/dim1/mat1.rs
137
src/dim1/mat1.rs
|
@ -1,137 +0,0 @@
|
||||||
use std::num::{One, Zero};
|
|
||||||
use std::rand::{Rand, Rng, RngUtil};
|
|
||||||
use std::cmp::ApproxEq;
|
|
||||||
use traits::division_ring::DivisionRing;
|
|
||||||
use traits::dim::Dim;
|
|
||||||
use traits::inv::Inv;
|
|
||||||
use traits::transpose::Transpose;
|
|
||||||
use traits::transformation::Transform; // FIXME: implement Transformable, Transformation
|
|
||||||
use traits::rlmul::{RMul, LMul};
|
|
||||||
use vec::Vec1;
|
|
||||||
|
|
||||||
#[deriving(Eq, ToStr)]
|
|
||||||
pub struct Mat1<N>
|
|
||||||
{ m11: N }
|
|
||||||
|
|
||||||
impl<N> Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
pub fn new(m11: N) -> Mat1<N>
|
|
||||||
{
|
|
||||||
Mat1
|
|
||||||
{ m11: m11 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N> Dim for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn dim() -> uint
|
|
||||||
{ 1 }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: One> One for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn one() -> Mat1<N>
|
|
||||||
{ return Mat1::new(One::one()) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Zero> Zero for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn zero() -> Mat1<N>
|
|
||||||
{ Mat1::new(Zero::zero()) }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn is_zero(&self) -> bool
|
|
||||||
{ self.m11.is_zero() }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Mul<N, N> + Add<N, N>> Mul<Mat1<N>, Mat1<N>> for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn mul(&self, other: &Mat1<N>) -> Mat1<N>
|
|
||||||
{ Mat1::new(self.m11 * other.m11) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Transform<Vec1<N>> for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transform_vec(&self, v: &Vec1<N>) -> Vec1<N>
|
|
||||||
{ self.rmul(v) }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn inv_transform(&self, v: &Vec1<N>) -> Vec1<N>
|
|
||||||
{ self.inverse().transform_vec(v) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> RMul<Vec1<N>> for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rmul(&self, other: &Vec1<N>) -> Vec1<N>
|
|
||||||
{ Vec1::new([self.m11 * other.at[0]]) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> LMul<Vec1<N>> for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn lmul(&self, other: &Vec1<N>) -> Vec1<N>
|
|
||||||
{ Vec1::new([self.m11 * other.at[0]]) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Inv for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn inverse(&self) -> Mat1<N>
|
|
||||||
{
|
|
||||||
let mut res : Mat1<N> = copy *self;
|
|
||||||
|
|
||||||
res.invert();
|
|
||||||
|
|
||||||
res
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn invert(&mut self)
|
|
||||||
{
|
|
||||||
assert!(!self.m11.is_zero());
|
|
||||||
|
|
||||||
self.m11 = One::one::<N>() / self.m11
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy> Transpose for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transposed(&self) -> Mat1<N>
|
|
||||||
{ copy *self }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn transpose(&mut self)
|
|
||||||
{ }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: ApproxEq<N>> ApproxEq<N> for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn approx_epsilon() -> N
|
|
||||||
{ ApproxEq::approx_epsilon::<N, N>() }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq(&self, other: &Mat1<N>) -> bool
|
|
||||||
{ self.m11.approx_eq(&other.m11) }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq_eps(&self, other: &Mat1<N>, epsilon: &N) -> bool
|
|
||||||
{ self.m11.approx_eq_eps(&other.m11, epsilon) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Rand> Rand for Mat1<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rand<R: Rng>(rng: &mut R) -> Mat1<N>
|
|
||||||
{ Mat1::new(rng.gen()) }
|
|
||||||
}
|
|
190
src/dim2/mat2.rs
190
src/dim2/mat2.rs
|
@ -1,190 +0,0 @@
|
||||||
use std::num::{One, Zero};
|
|
||||||
use std::rand::{Rand, Rng, RngUtil};
|
|
||||||
use std::cmp::ApproxEq;
|
|
||||||
use std::util::swap;
|
|
||||||
use traits::transformation::Transform;
|
|
||||||
use traits::division_ring::DivisionRing;
|
|
||||||
use traits::dim::Dim;
|
|
||||||
use traits::inv::Inv;
|
|
||||||
use traits::transpose::Transpose;
|
|
||||||
use traits::rlmul::{RMul, LMul};
|
|
||||||
use vec::Vec2;
|
|
||||||
|
|
||||||
#[deriving(Eq, ToStr)]
|
|
||||||
pub struct Mat2<N>
|
|
||||||
{
|
|
||||||
m11: N, m12: N,
|
|
||||||
m21: N, m22: N
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N> Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
pub fn new(m11: N, m12: N, m21: N, m22: N) -> Mat2<N>
|
|
||||||
{
|
|
||||||
Mat2
|
|
||||||
{
|
|
||||||
m11: m11, m12: m12,
|
|
||||||
m21: m21, m22: m22,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N> Dim for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn dim() -> uint
|
|
||||||
{ 2 }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + One + Zero> One for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn one() -> Mat2<N>
|
|
||||||
{
|
|
||||||
let (_0, _1) = (Zero::zero(), One::one());
|
|
||||||
return Mat2::new(copy _1, copy _0,
|
|
||||||
_0, _1)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N:Copy + Zero> Zero for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn zero() -> Mat2<N>
|
|
||||||
{
|
|
||||||
let _0 = Zero::zero();
|
|
||||||
return Mat2::new(copy _0, copy _0,
|
|
||||||
copy _0, _0)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn is_zero(&self) -> bool
|
|
||||||
{
|
|
||||||
self.m11.is_zero() && self.m12.is_zero() &&
|
|
||||||
self.m21.is_zero() && self.m22.is_zero()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Mul<N, N> + Add<N, N>> Mul<Mat2<N>, Mat2<N>> for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn mul(&self, other: &Mat2<N>) -> Mat2<N>
|
|
||||||
{
|
|
||||||
Mat2::new(
|
|
||||||
self.m11 * other.m11 + self.m12 * other.m21,
|
|
||||||
self.m11 * other.m12 + self.m12 * other.m22,
|
|
||||||
self.m21 * other.m11 + self.m22 * other.m21,
|
|
||||||
self.m21 * other.m12 + self.m22 * other.m22
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Transform<Vec2<N>> for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transform_vec(&self, v: &Vec2<N>) -> Vec2<N>
|
|
||||||
{ self.rmul(v) }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn inv_transform(&self, v: &Vec2<N>) -> Vec2<N>
|
|
||||||
{ self.inverse().transform_vec(v) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> RMul<Vec2<N>> for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rmul(&self, other: &Vec2<N>) -> Vec2<N>
|
|
||||||
{
|
|
||||||
Vec2::new(
|
|
||||||
[ self.m11 * other.at[0] + self.m12 * other.at[1],
|
|
||||||
self.m21 * other.at[0] + self.m22 * other.at[1] ]
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> LMul<Vec2<N>> for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn lmul(&self, other: &Vec2<N>) -> Vec2<N>
|
|
||||||
{
|
|
||||||
Vec2::new(
|
|
||||||
[ self.m11 * other.at[0] + self.m21 * other.at[1],
|
|
||||||
self.m12 * other.at[0] + self.m22 * other.at[1] ]
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Inv for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn inverse(&self) -> Mat2<N>
|
|
||||||
{
|
|
||||||
let mut res : Mat2<N> = copy *self;
|
|
||||||
|
|
||||||
res.invert();
|
|
||||||
|
|
||||||
res
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn invert(&mut self)
|
|
||||||
{
|
|
||||||
let det = self.m11 * self.m22 - self.m21 * self.m12;
|
|
||||||
|
|
||||||
assert!(!det.is_zero());
|
|
||||||
|
|
||||||
*self = Mat2::new(self.m22 / det , -self.m12 / det,
|
|
||||||
-self.m21 / det, self.m11 / det)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy> Transpose for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transposed(&self) -> Mat2<N>
|
|
||||||
{
|
|
||||||
Mat2::new(copy self.m11, copy self.m21,
|
|
||||||
copy self.m12, copy self.m22)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn transpose(&mut self)
|
|
||||||
{ swap(&mut self.m21, &mut self.m12); }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N:ApproxEq<N>> ApproxEq<N> for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn approx_epsilon() -> N
|
|
||||||
{ ApproxEq::approx_epsilon::<N, N>() }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq(&self, other: &Mat2<N>) -> bool
|
|
||||||
{
|
|
||||||
self.m11.approx_eq(&other.m11) &&
|
|
||||||
self.m12.approx_eq(&other.m12) &&
|
|
||||||
|
|
||||||
self.m21.approx_eq(&other.m21) &&
|
|
||||||
self.m22.approx_eq(&other.m22)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq_eps(&self, other: &Mat2<N>, epsilon: &N) -> bool
|
|
||||||
{
|
|
||||||
self.m11.approx_eq_eps(&other.m11, epsilon) &&
|
|
||||||
self.m12.approx_eq_eps(&other.m12, epsilon) &&
|
|
||||||
|
|
||||||
self.m21.approx_eq_eps(&other.m21, epsilon) &&
|
|
||||||
self.m22.approx_eq_eps(&other.m22, epsilon)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Rand> Rand for Mat2<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rand<R: Rng>(rng: &mut R) -> Mat2<N>
|
|
||||||
{ Mat2::new(rng.gen(), rng.gen(), rng.gen(), rng.gen()) }
|
|
||||||
}
|
|
244
src/dim3/mat3.rs
244
src/dim3/mat3.rs
|
@ -1,244 +0,0 @@
|
||||||
use std::num::{One, Zero};
|
|
||||||
use std::rand::{Rand, Rng, RngUtil};
|
|
||||||
use std::cmp::ApproxEq;
|
|
||||||
use std::util::swap;
|
|
||||||
use traits::dim::Dim;
|
|
||||||
use traits::inv::Inv;
|
|
||||||
use traits::transformation::Transform;
|
|
||||||
use traits::division_ring::DivisionRing;
|
|
||||||
use traits::transpose::Transpose;
|
|
||||||
use traits::rlmul::{RMul, LMul};
|
|
||||||
use vec::Vec3;
|
|
||||||
|
|
||||||
#[deriving(Eq, ToStr)]
|
|
||||||
pub struct Mat3<N>
|
|
||||||
{
|
|
||||||
m11: N, m12: N, m13: N,
|
|
||||||
m21: N, m22: N, m23: N,
|
|
||||||
m31: N, m32: N, m33: N
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N> Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
pub fn new(m11: N, m12: N, m13: N,
|
|
||||||
m21: N, m22: N, m23: N,
|
|
||||||
m31: N, m32: N, m33: N) -> Mat3<N>
|
|
||||||
{
|
|
||||||
Mat3
|
|
||||||
{
|
|
||||||
m11: m11, m12: m12, m13: m13,
|
|
||||||
m21: m21, m22: m22, m23: m23,
|
|
||||||
m31: m31, m32: m32, m33: m33
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N> Dim for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn dim() -> uint
|
|
||||||
{ 3 }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + One + Zero> One for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn one() -> Mat3<N>
|
|
||||||
{
|
|
||||||
let (_0, _1) = (Zero::zero(), One::one());
|
|
||||||
return Mat3::new(copy _1, copy _0, copy _0,
|
|
||||||
copy _0, copy _1, copy _0,
|
|
||||||
copy _0, _0, _1)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + Zero> Zero for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn zero() -> Mat3<N>
|
|
||||||
{
|
|
||||||
let _0 = Zero::zero();
|
|
||||||
return Mat3::new(copy _0, copy _0, copy _0,
|
|
||||||
copy _0, copy _0, copy _0,
|
|
||||||
copy _0, copy _0, _0)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn is_zero(&self) -> bool
|
|
||||||
{
|
|
||||||
self.m11.is_zero() && self.m12.is_zero() && self.m13.is_zero() &&
|
|
||||||
self.m21.is_zero() && self.m22.is_zero() && self.m23.is_zero() &&
|
|
||||||
self.m31.is_zero() && self.m32.is_zero() && self.m33.is_zero()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Mul<N, N> + Add<N, N>> Mul<Mat3<N>, Mat3<N>> for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn mul(&self, other: &Mat3<N>) -> Mat3<N>
|
|
||||||
{
|
|
||||||
Mat3::new(
|
|
||||||
self.m11 * other.m11 + self.m12 * other.m21 + self.m13 * other.m31,
|
|
||||||
self.m11 * other.m12 + self.m12 * other.m22 + self.m13 * other.m32,
|
|
||||||
self.m11 * other.m13 + self.m12 * other.m23 + self.m13 * other.m33,
|
|
||||||
|
|
||||||
self.m21 * other.m11 + self.m22 * other.m21 + self.m23 * other.m31,
|
|
||||||
self.m21 * other.m12 + self.m22 * other.m22 + self.m23 * other.m32,
|
|
||||||
self.m21 * other.m13 + self.m22 * other.m23 + self.m23 * other.m33,
|
|
||||||
|
|
||||||
self.m31 * other.m11 + self.m32 * other.m21 + self.m33 * other.m31,
|
|
||||||
self.m31 * other.m12 + self.m32 * other.m22 + self.m33 * other.m32,
|
|
||||||
self.m31 * other.m13 + self.m32 * other.m23 + self.m33 * other.m33
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Transform<Vec3<N>> for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transform_vec(&self, v: &Vec3<N>) -> Vec3<N>
|
|
||||||
{ self.rmul(v) }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn inv_transform(&self, v: &Vec3<N>) -> Vec3<N>
|
|
||||||
{ self.inverse().transform_vec(v) }
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> RMul<Vec3<N>> for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rmul(&self, other: &Vec3<N>) -> Vec3<N>
|
|
||||||
{
|
|
||||||
Vec3::new(
|
|
||||||
[self.m11 * other.at[0] + self.m12 * other.at[1] + self.m13 * other.at[2],
|
|
||||||
self.m21 * other.at[0] + self.m22 * other.at[1] + self.m33 * other.at[2],
|
|
||||||
self.m31 * other.at[0] + self.m32 * other.at[1] + self.m33 * other.at[2]]
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Add<N, N> + Mul<N, N>> LMul<Vec3<N>> for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn lmul(&self, other: &Vec3<N>) -> Vec3<N>
|
|
||||||
{
|
|
||||||
Vec3::new(
|
|
||||||
[self.m11 * other.at[0] + self.m21 * other.at[1] + self.m31 * other.at[2],
|
|
||||||
self.m12 * other.at[0] + self.m22 * other.at[1] + self.m32 * other.at[2],
|
|
||||||
self.m13 * other.at[0] + self.m23 * other.at[1] + self.m33 * other.at[2]]
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Copy + DivisionRing>
|
|
||||||
Inv for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn inverse(&self) -> Mat3<N>
|
|
||||||
{
|
|
||||||
let mut res = copy *self;
|
|
||||||
|
|
||||||
res.invert();
|
|
||||||
|
|
||||||
res
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn invert(&mut self)
|
|
||||||
{
|
|
||||||
let minor_m22_m33 = self.m22 * self.m33 - self.m32 * self.m23;
|
|
||||||
let minor_m21_m33 = self.m21 * self.m33 - self.m31 * self.m23;
|
|
||||||
let minor_m21_m32 = self.m21 * self.m32 - self.m31 * self.m22;
|
|
||||||
|
|
||||||
let det = self.m11 * minor_m22_m33
|
|
||||||
- self.m12 * minor_m21_m33
|
|
||||||
+ self.m13 * minor_m21_m32;
|
|
||||||
|
|
||||||
assert!(!det.is_zero());
|
|
||||||
|
|
||||||
*self = Mat3::new(
|
|
||||||
(minor_m22_m33 / det),
|
|
||||||
((self.m13 * self.m32 - self.m33 * self.m12) / det),
|
|
||||||
((self.m12 * self.m23 - self.m22 * self.m13) / det),
|
|
||||||
|
|
||||||
(-minor_m21_m33 / det),
|
|
||||||
((self.m11 * self.m33 - self.m31 * self.m13) / det),
|
|
||||||
((self.m13 * self.m21 - self.m23 * self.m11) / det),
|
|
||||||
|
|
||||||
(minor_m21_m32 / det),
|
|
||||||
((self.m12 * self.m31 - self.m32 * self.m11) / det),
|
|
||||||
((self.m11 * self.m22 - self.m21 * self.m12) / det)
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N:Copy> Transpose for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn transposed(&self) -> Mat3<N>
|
|
||||||
{
|
|
||||||
Mat3::new(copy self.m11, copy self.m21, copy self.m31,
|
|
||||||
copy self.m12, copy self.m22, copy self.m32,
|
|
||||||
copy self.m13, copy self.m23, copy self.m33)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn transpose(&mut self)
|
|
||||||
{
|
|
||||||
swap(&mut self.m12, &mut self.m21);
|
|
||||||
swap(&mut self.m13, &mut self.m31);
|
|
||||||
swap(&mut self.m23, &mut self.m32);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N:ApproxEq<N>> ApproxEq<N> for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn approx_epsilon() -> N
|
|
||||||
{ ApproxEq::approx_epsilon::<N, N>() }
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq(&self, other: &Mat3<N>) -> bool
|
|
||||||
{
|
|
||||||
self.m11.approx_eq(&other.m11) &&
|
|
||||||
self.m12.approx_eq(&other.m12) &&
|
|
||||||
self.m13.approx_eq(&other.m13) &&
|
|
||||||
|
|
||||||
self.m21.approx_eq(&other.m21) &&
|
|
||||||
self.m22.approx_eq(&other.m22) &&
|
|
||||||
self.m23.approx_eq(&other.m23) &&
|
|
||||||
|
|
||||||
self.m31.approx_eq(&other.m31) &&
|
|
||||||
self.m32.approx_eq(&other.m32) &&
|
|
||||||
self.m33.approx_eq(&other.m33)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
fn approx_eq_eps(&self, other: &Mat3<N>, epsilon: &N) -> bool
|
|
||||||
{
|
|
||||||
self.m11.approx_eq_eps(&other.m11, epsilon) &&
|
|
||||||
self.m12.approx_eq_eps(&other.m12, epsilon) &&
|
|
||||||
self.m13.approx_eq_eps(&other.m13, epsilon) &&
|
|
||||||
|
|
||||||
self.m21.approx_eq_eps(&other.m21, epsilon) &&
|
|
||||||
self.m22.approx_eq_eps(&other.m22, epsilon) &&
|
|
||||||
self.m23.approx_eq_eps(&other.m23, epsilon) &&
|
|
||||||
|
|
||||||
self.m31.approx_eq_eps(&other.m31, epsilon) &&
|
|
||||||
self.m32.approx_eq_eps(&other.m32, epsilon) &&
|
|
||||||
self.m33.approx_eq_eps(&other.m33, epsilon)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Rand> Rand for Mat3<N>
|
|
||||||
{
|
|
||||||
#[inline]
|
|
||||||
fn rand<R: Rng>(rng: &mut R) -> Mat3<N>
|
|
||||||
{
|
|
||||||
Mat3::new(rng.gen(), rng.gen(), rng.gen(),
|
|
||||||
rng.gen(), rng.gen(), rng.gen(),
|
|
||||||
rng.gen(), rng.gen(), rng.gen())
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -0,0 +1,600 @@
|
||||||
|
use std::uint::iterate;
|
||||||
|
use std::num::{One, Zero};
|
||||||
|
use std::vec::swap;
|
||||||
|
use std::cmp::ApproxEq;
|
||||||
|
use std::rand::{Rand, Rng, RngUtil};
|
||||||
|
use std::iterator::IteratorUtil;
|
||||||
|
use vec::{Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||||
|
use traits::dim::Dim;
|
||||||
|
use traits::ring::Ring;
|
||||||
|
use traits::inv::Inv;
|
||||||
|
use traits::division_ring::DivisionRing;
|
||||||
|
use traits::transpose::Transpose;
|
||||||
|
use traits::rlmul::{RMul, LMul};
|
||||||
|
use traits::transformation::Transform;
|
||||||
|
|
||||||
|
macro_rules! mat_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N> $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
pub fn new(mij: [N, ..$dim * $dim]) -> $t<N>
|
||||||
|
{ $t { mij: mij } }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! one_impl(
|
||||||
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
||||||
|
impl<N: Copy + One + Zero> One for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn one() -> $t<N>
|
||||||
|
{
|
||||||
|
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
|
||||||
|
return $t::new( [ $( copy $value, )+ ] )
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
macro_rules! zero_impl(
|
||||||
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
||||||
|
impl<N: Copy + Zero> Zero for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn zero() -> $t<N>
|
||||||
|
{
|
||||||
|
let _0 = Zero::zero();
|
||||||
|
return $t::new( [ $( copy $value, )+ ] )
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn is_zero(&self) -> bool
|
||||||
|
{ self.mij.iter().all(|e| e.is_zero()) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! dim_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N> Dim for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn dim() -> uint
|
||||||
|
{ $dim }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! mat_indexing_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy> $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
pub fn offset(&self, i: uint, j: uint) -> uint
|
||||||
|
{ i * $dim + j }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn set(&mut self, i: uint, j: uint, t: &N)
|
||||||
|
{
|
||||||
|
self.mij[self.offset(i, j)] = copy *t
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn at(&self, i: uint, j: uint) -> N
|
||||||
|
{
|
||||||
|
copy self.mij[self.offset(i, j)]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! mul_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy + Ring>
|
||||||
|
Mul<$t<N>, $t<N>> for $t<N>
|
||||||
|
{
|
||||||
|
fn mul(&self, other: &$t<N>) -> $t<N>
|
||||||
|
{
|
||||||
|
let mut res: $t<N> = Zero::zero();
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |i|
|
||||||
|
{
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{
|
||||||
|
let mut acc = Zero::zero::<N>();
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |k|
|
||||||
|
{ acc = acc + self.at(i, k) * other.at(k, j); }
|
||||||
|
|
||||||
|
res.set(i, j, &acc);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! rmul_impl(
|
||||||
|
($t: ident, $v: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy + Ring>
|
||||||
|
RMul<$v<N>> for $t<N>
|
||||||
|
{
|
||||||
|
fn rmul(&self, other: &$v<N>) -> $v<N>
|
||||||
|
{
|
||||||
|
let mut res : $v<N> = Zero::zero();
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |i|
|
||||||
|
{
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{ res.at[i] = res.at[i] + other.at[j] * self.at(i, j); }
|
||||||
|
}
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! lmul_impl(
|
||||||
|
($t: ident, $v: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy + Ring>
|
||||||
|
LMul<$v<N>> for $t<N>
|
||||||
|
{
|
||||||
|
fn lmul(&self, other: &$v<N>) -> $v<N>
|
||||||
|
{
|
||||||
|
|
||||||
|
let mut res : $v<N> = Zero::zero();
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |i|
|
||||||
|
{
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{ res.at[i] = res.at[i] + other.at[j] * self.at(j, i); }
|
||||||
|
}
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! transform_impl(
|
||||||
|
($t: ident, $v: ident) => (
|
||||||
|
impl<N: Copy + DivisionRing + Eq>
|
||||||
|
Transform<$v<N>> for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn transform_vec(&self, v: &$v<N>) -> $v<N>
|
||||||
|
{ self.rmul(v) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn inv_transform(&self, v: &$v<N>) -> $v<N>
|
||||||
|
{ self.inverse().transform_vec(v) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! inv_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy + Eq + DivisionRing>
|
||||||
|
Inv for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn inverse(&self) -> $t<N>
|
||||||
|
{
|
||||||
|
let mut res : $t<N> = copy *self;
|
||||||
|
|
||||||
|
res.invert();
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
|
||||||
|
fn invert(&mut self)
|
||||||
|
{
|
||||||
|
let mut res: $t<N> = One::one();
|
||||||
|
let _0N: N = Zero::zero();
|
||||||
|
|
||||||
|
// inversion using Gauss-Jordan elimination
|
||||||
|
for iterate(0u, $dim) |k|
|
||||||
|
{
|
||||||
|
// search a non-zero value on the k-th column
|
||||||
|
// FIXME: would it be worth it to spend some more time searching for the
|
||||||
|
// max instead?
|
||||||
|
|
||||||
|
let mut n0 = k; // index of a non-zero entry
|
||||||
|
|
||||||
|
while (n0 != $dim)
|
||||||
|
{
|
||||||
|
if self.at(n0, k) != _0N
|
||||||
|
{ break; }
|
||||||
|
|
||||||
|
n0 = n0 + 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// swap pivot line
|
||||||
|
if n0 != k
|
||||||
|
{
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{
|
||||||
|
let off_n0_j = self.offset(n0, j);
|
||||||
|
let off_k_j = self.offset(k, j);
|
||||||
|
|
||||||
|
swap(self.mij, off_n0_j, off_k_j);
|
||||||
|
swap(res.mij, off_n0_j, off_k_j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let pivot = self.at(k, k);
|
||||||
|
|
||||||
|
for iterate(k, $dim) |j|
|
||||||
|
{
|
||||||
|
let selfval = &(self.at(k, j) / pivot);
|
||||||
|
self.set(k, j, selfval);
|
||||||
|
}
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{
|
||||||
|
let resval = &(res.at(k, j) / pivot);
|
||||||
|
res.set(k, j, resval);
|
||||||
|
}
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |l|
|
||||||
|
{
|
||||||
|
if l != k
|
||||||
|
{
|
||||||
|
let normalizer = self.at(l, k);
|
||||||
|
|
||||||
|
for iterate(k, $dim) |j|
|
||||||
|
{
|
||||||
|
let selfval = &(self.at(l, j) - self.at(k, j) * normalizer);
|
||||||
|
self.set(l, j, selfval);
|
||||||
|
}
|
||||||
|
|
||||||
|
for iterate(0u, $dim) |j|
|
||||||
|
{
|
||||||
|
let resval = &(res.at(l, j) - res.at(k, j) * normalizer);
|
||||||
|
res.set(l, j, resval);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
*self = res;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! transpose_impl(
|
||||||
|
($t: ident, $dim: expr) => (
|
||||||
|
impl<N: Copy> Transpose for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn transposed(&self) -> $t<N>
|
||||||
|
{
|
||||||
|
let mut res = copy *self;
|
||||||
|
|
||||||
|
res.transpose();
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
|
||||||
|
fn transpose(&mut self)
|
||||||
|
{
|
||||||
|
for iterate(1u, $dim) |i|
|
||||||
|
{
|
||||||
|
for iterate(0u, $dim - 1) |j|
|
||||||
|
{
|
||||||
|
let off_i_j = self.offset(i, j);
|
||||||
|
let off_j_i = self.offset(j, i);
|
||||||
|
|
||||||
|
swap(self.mij, off_i_j, off_j_i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! approx_eq_impl(
|
||||||
|
($t: ident) => (
|
||||||
|
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn approx_epsilon() -> N
|
||||||
|
{ ApproxEq::approx_epsilon::<N, N>() }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn approx_eq(&self, other: &$t<N>) -> bool
|
||||||
|
{
|
||||||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq(b) }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
|
||||||
|
{
|
||||||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||||||
|
|
||||||
|
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
macro_rules! rand_impl(
|
||||||
|
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||||||
|
impl<N: Rand> Rand for $t<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn rand<R: Rng>($param: &mut R) -> $t<N>
|
||||||
|
{ $t::new([ $( $elem.gen(), )+ ]) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat1<N>
|
||||||
|
{ mij: [N, ..1 * 1] }
|
||||||
|
|
||||||
|
mat_impl!(Mat1, 1)
|
||||||
|
one_impl!(Mat1, [ _1 ])
|
||||||
|
zero_impl!(Mat1, [ _0 ])
|
||||||
|
dim_impl!(Mat1, 1)
|
||||||
|
mat_indexing_impl!(Mat1, 1)
|
||||||
|
mul_impl!(Mat1, 1)
|
||||||
|
rmul_impl!(Mat1, Vec1, 1)
|
||||||
|
lmul_impl!(Mat1, Vec1, 1)
|
||||||
|
transform_impl!(Mat1, Vec1)
|
||||||
|
// inv_impl!(Mat1, 1)
|
||||||
|
transpose_impl!(Mat1, 1)
|
||||||
|
approx_eq_impl!(Mat1)
|
||||||
|
rand_impl!(Mat1, rng, [ rng ])
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat2<N>
|
||||||
|
{ mij: [N, ..2 * 2] }
|
||||||
|
|
||||||
|
mat_impl!(Mat2, 2)
|
||||||
|
one_impl!(Mat2, [ _1 | _0 |
|
||||||
|
_0 | _1 ])
|
||||||
|
zero_impl!(Mat2, [ _0 | _0 |
|
||||||
|
_0 | _0 ])
|
||||||
|
dim_impl!(Mat2, 2)
|
||||||
|
mat_indexing_impl!(Mat2, 2)
|
||||||
|
mul_impl!(Mat2, 2)
|
||||||
|
rmul_impl!(Mat2, Vec2, 2)
|
||||||
|
lmul_impl!(Mat2, Vec2, 2)
|
||||||
|
transform_impl!(Mat2, Vec2)
|
||||||
|
// inv_impl!(Mat2, 2)
|
||||||
|
transpose_impl!(Mat2, 2)
|
||||||
|
approx_eq_impl!(Mat2)
|
||||||
|
rand_impl!(Mat2, rng, [ rng | rng |
|
||||||
|
rng | rng ])
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat3<N>
|
||||||
|
{ mij: [N, ..3 * 3] }
|
||||||
|
|
||||||
|
mat_impl!(Mat3, 3)
|
||||||
|
one_impl!(Mat3, [ _1 | _0 | _0 |
|
||||||
|
_0 | _1 | _0 |
|
||||||
|
_0 | _0 | _1 ])
|
||||||
|
zero_impl!(Mat3, [ _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 ])
|
||||||
|
dim_impl!(Mat3, 3)
|
||||||
|
mat_indexing_impl!(Mat3, 3)
|
||||||
|
mul_impl!(Mat3, 3)
|
||||||
|
rmul_impl!(Mat3, Vec3, 3)
|
||||||
|
lmul_impl!(Mat3, Vec3, 3)
|
||||||
|
transform_impl!(Mat3, Vec3)
|
||||||
|
// inv_impl!(Mat3, 3)
|
||||||
|
transpose_impl!(Mat3, 3)
|
||||||
|
approx_eq_impl!(Mat3)
|
||||||
|
rand_impl!(Mat3, rng, [ rng | rng | rng |
|
||||||
|
rng | rng | rng |
|
||||||
|
rng | rng | rng])
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat4<N>
|
||||||
|
{ mij: [N, ..4 * 4] }
|
||||||
|
|
||||||
|
mat_impl!(Mat4, 4)
|
||||||
|
one_impl!(Mat4, [
|
||||||
|
_1 | _0 | _0 | _0 |
|
||||||
|
_0 | _1 | _0 | _0 |
|
||||||
|
_0 | _0 | _1 | _0 |
|
||||||
|
_0 | _0 | _0 | _1
|
||||||
|
])
|
||||||
|
zero_impl!(Mat4, [
|
||||||
|
_0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0
|
||||||
|
])
|
||||||
|
dim_impl!(Mat4, 4)
|
||||||
|
mat_indexing_impl!(Mat4, 4)
|
||||||
|
mul_impl!(Mat4, 4)
|
||||||
|
rmul_impl!(Mat4, Vec4, 4)
|
||||||
|
lmul_impl!(Mat4, Vec4, 4)
|
||||||
|
transform_impl!(Mat4, Vec4)
|
||||||
|
inv_impl!(Mat4, 4)
|
||||||
|
transpose_impl!(Mat4, 4)
|
||||||
|
approx_eq_impl!(Mat4)
|
||||||
|
rand_impl!(Mat4, rng, [
|
||||||
|
rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng
|
||||||
|
])
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat5<N>
|
||||||
|
{ mij: [N, ..5 * 5] }
|
||||||
|
|
||||||
|
mat_impl!(Mat5, 5)
|
||||||
|
one_impl!(Mat5, [
|
||||||
|
_1 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _1 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _1 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _1 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _1
|
||||||
|
])
|
||||||
|
zero_impl!(Mat5, [
|
||||||
|
_0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0
|
||||||
|
])
|
||||||
|
dim_impl!(Mat5, 5)
|
||||||
|
mat_indexing_impl!(Mat5, 5)
|
||||||
|
mul_impl!(Mat5, 5)
|
||||||
|
rmul_impl!(Mat5, Vec5, 5)
|
||||||
|
lmul_impl!(Mat5, Vec5, 5)
|
||||||
|
transform_impl!(Mat5, Vec5)
|
||||||
|
inv_impl!(Mat5, 5)
|
||||||
|
transpose_impl!(Mat5, 5)
|
||||||
|
approx_eq_impl!(Mat5)
|
||||||
|
rand_impl!(Mat5, rng, [
|
||||||
|
rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng
|
||||||
|
])
|
||||||
|
|
||||||
|
#[deriving(ToStr)]
|
||||||
|
pub struct Mat6<N>
|
||||||
|
{ mij: [N, ..6 * 6] }
|
||||||
|
|
||||||
|
mat_impl!(Mat6, 6)
|
||||||
|
one_impl!(Mat6, [
|
||||||
|
_1 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _1 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _1 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _1 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _1 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _1
|
||||||
|
])
|
||||||
|
zero_impl!(Mat6, [
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0 |
|
||||||
|
_0 | _0 | _0 | _0 | _0 | _0
|
||||||
|
])
|
||||||
|
dim_impl!(Mat6, 6)
|
||||||
|
mat_indexing_impl!(Mat6, 6)
|
||||||
|
mul_impl!(Mat6, 6)
|
||||||
|
rmul_impl!(Mat6, Vec6, 6)
|
||||||
|
lmul_impl!(Mat6, Vec6, 6)
|
||||||
|
transform_impl!(Mat6, Vec6)
|
||||||
|
inv_impl!(Mat6, 6)
|
||||||
|
transpose_impl!(Mat6, 6)
|
||||||
|
approx_eq_impl!(Mat6)
|
||||||
|
rand_impl!(Mat6, rng, [
|
||||||
|
rng | rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng | rng |
|
||||||
|
rng | rng | rng | rng | rng | rng
|
||||||
|
])
|
||||||
|
|
||||||
|
// some specializations:
|
||||||
|
impl<N: Copy + DivisionRing>
|
||||||
|
Inv for Mat1<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn inverse(&self) -> Mat1<N>
|
||||||
|
{
|
||||||
|
let mut res : Mat1<N> = copy *self;
|
||||||
|
|
||||||
|
res.invert();
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn invert(&mut self)
|
||||||
|
{
|
||||||
|
assert!(!self.mij[0].is_zero());
|
||||||
|
|
||||||
|
self.mij[0] = One::one::<N>() / self.mij[0]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<N: Copy + DivisionRing>
|
||||||
|
Inv for Mat2<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn inverse(&self) -> Mat2<N>
|
||||||
|
{
|
||||||
|
let mut res : Mat2<N> = copy *self;
|
||||||
|
|
||||||
|
res.invert();
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn invert(&mut self)
|
||||||
|
{
|
||||||
|
let det = self.mij[0 * 2 + 0] * self.mij[1 * 2 + 1] - self.mij[1 * 2 + 0] * self.mij[0 * 2 + 1];
|
||||||
|
|
||||||
|
assert!(!det.is_zero());
|
||||||
|
|
||||||
|
*self = Mat2::new([self.mij[1 * 2 + 1] / det , -self.mij[0 * 2 + 1] / det,
|
||||||
|
-self.mij[1 * 2 + 0] / det, self.mij[0 * 2 + 0] / det])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<N: Copy + DivisionRing>
|
||||||
|
Inv for Mat3<N>
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn inverse(&self) -> Mat3<N>
|
||||||
|
{
|
||||||
|
let mut res = copy *self;
|
||||||
|
|
||||||
|
res.invert();
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn invert(&mut self)
|
||||||
|
{
|
||||||
|
let minor_m12_m23 = self.mij[1 * 3 + 1] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 1] * self.mij[1 * 3 + 2];
|
||||||
|
let minor_m11_m23 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 2];
|
||||||
|
let minor_m11_m22 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 1];
|
||||||
|
|
||||||
|
let det = self.mij[0 * 3 + 0] * minor_m12_m23
|
||||||
|
- self.mij[0 * 3 + 1] * minor_m11_m23
|
||||||
|
+ self.mij[0 * 3 + 2] * minor_m11_m22;
|
||||||
|
|
||||||
|
assert!(!det.is_zero());
|
||||||
|
|
||||||
|
*self = Mat3::new( [
|
||||||
|
(minor_m12_m23 / det),
|
||||||
|
((self.mij[0 * 3 + 2] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 2] * self.mij[0 * 3 + 1]) / det),
|
||||||
|
((self.mij[0 * 3 + 1] * self.mij[1 * 3 + 2] - self.mij[1 * 3 + 1] * self.mij[0 * 3 + 2]) / det),
|
||||||
|
|
||||||
|
(-minor_m11_m23 / det),
|
||||||
|
((self.mij[0 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[0 * 3 + 2]) / det),
|
||||||
|
((self.mij[0 * 3 + 2] * self.mij[1 * 3 + 0] - self.mij[1 * 3 + 2] * self.mij[0 * 3 + 0]) / det),
|
||||||
|
|
||||||
|
(minor_m11_m22 / det),
|
||||||
|
((self.mij[0 * 3 + 1] * self.mij[2 * 3 + 0] - self.mij[2 * 3 + 1] * self.mij[0 * 3 + 0]) / det),
|
||||||
|
((self.mij[0 * 3 + 0] * self.mij[1 * 3 + 1] - self.mij[1 * 3 + 0] * self.mij[0 * 3 + 1]) / det)
|
||||||
|
] )
|
||||||
|
}
|
||||||
|
}
|
|
@ -16,24 +16,7 @@
|
||||||
extern mod std;
|
extern mod std;
|
||||||
|
|
||||||
pub mod vec;
|
pub mod vec;
|
||||||
|
pub mod mat;
|
||||||
/// 1-dimensional linear algebra.
|
|
||||||
pub mod dim1
|
|
||||||
{
|
|
||||||
pub mod mat1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 2-dimensional linear algebra.
|
|
||||||
pub mod dim2
|
|
||||||
{
|
|
||||||
pub mod mat2;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 3-dimensional linear algebra.
|
|
||||||
pub mod dim3
|
|
||||||
{
|
|
||||||
pub mod mat3;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// n-dimensional linear algebra (slower).
|
/// n-dimensional linear algebra (slower).
|
||||||
pub mod ndim
|
pub mod ndim
|
||||||
|
|
|
@ -11,11 +11,7 @@ use traits::rotation::{Rotation, Rotatable};
|
||||||
#[test]
|
#[test]
|
||||||
use vec::Vec1;
|
use vec::Vec1;
|
||||||
#[test]
|
#[test]
|
||||||
use dim1::mat1::Mat1;
|
use mat::{Mat1, Mat2, Mat3};
|
||||||
#[test]
|
|
||||||
use dim2::mat2::Mat2;
|
|
||||||
#[test]
|
|
||||||
use dim3::mat3::Mat3;
|
|
||||||
#[test]
|
#[test]
|
||||||
use adaptors::rotmat::Rotmat;
|
use adaptors::rotmat::Rotmat;
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue