Implemented QR algorithm with initial transformation to Hessenberg form and Wilkinson shift for symmetric matrices
This commit is contained in:
parent
6fee70bd19
commit
c4753aaf65
|
@ -151,7 +151,8 @@ pub use structs::{
|
|||
pub use linalg::{
|
||||
qr,
|
||||
householder_matrix,
|
||||
cholesky
|
||||
cholesky,
|
||||
hessenberg
|
||||
};
|
||||
|
||||
mod structs;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use traits::operations::{Transpose, ApproxEq};
|
||||
use traits::structure::{ColSlice, Eye, Indexable, Diag, SquareMat, BaseFloat};
|
||||
use traits::structure::{ColSlice, Eye, Indexable, Diag, SquareMat, BaseFloat, Cast};
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp::min;
|
||||
use std::ops::{Mul, Add, Sub};
|
||||
|
@ -71,7 +71,7 @@ pub fn qr<N, V, M>(m: &M) -> (M, M)
|
|||
(q, r)
|
||||
}
|
||||
|
||||
/// Eigendecomposition of a square matrix using the qr algorithm.
|
||||
/// Eigendecomposition of a square symmetric matrix using the qr algorithm
|
||||
pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
|
||||
where N: BaseFloat,
|
||||
V: Mul<M, Output = V>,
|
||||
|
@ -79,39 +79,165 @@ pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
|
|||
M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> +
|
||||
Sub<M, Output = M> + ColSlice<VS> +
|
||||
ApproxEq<N> + Copy {
|
||||
let mut eigenvectors: M = ::one::<M>();
|
||||
let mut eigenvalues = *m;
|
||||
// let mut shifter: M = Eye::new_identity(rows);
|
||||
|
||||
let (mut eigenvectors, mut eigenvalues) = hessenberg(m);
|
||||
|
||||
// Allocate arrays for Givens rotation components
|
||||
let mut c = Vec::<N>::with_capacity(::dim::<M>()-1);
|
||||
let mut s = Vec::<N>::with_capacity(::dim::<M>()-1);
|
||||
|
||||
if ::dim::<M>() == 1 {
|
||||
return (eigenvectors, eigenvalues.diag());
|
||||
}
|
||||
|
||||
unsafe {
|
||||
c.set_len(::dim::<M>()-1);
|
||||
s.set_len(::dim::<M>()-1);
|
||||
}
|
||||
|
||||
let mut iter = 0;
|
||||
for _ in 0..niter {
|
||||
let mut stop = true;
|
||||
let mut curdim = ::dim::<M>()-1;
|
||||
|
||||
for j in 0..::dim::<M>() {
|
||||
for i in 0..j {
|
||||
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
for _ in 0..::dim::<M>() {
|
||||
|
||||
let mut stop = false;
|
||||
|
||||
while !stop && iter < niter {
|
||||
|
||||
let lambda;
|
||||
|
||||
unsafe {
|
||||
let a = eigenvalues.unsafe_at((curdim-1, curdim-1));
|
||||
let b = eigenvalues.unsafe_at((curdim-1, curdim));
|
||||
let c = eigenvalues.unsafe_at((curdim, curdim-1));
|
||||
let d = eigenvalues.unsafe_at((curdim, curdim));
|
||||
|
||||
let trace = a + d;
|
||||
let det = a * d - b * c;
|
||||
|
||||
let constquarter: N = Cast::from(0.25f64);
|
||||
let consthalf: N = Cast::from(0.5f64);
|
||||
|
||||
let e = (constquarter * trace * trace - det).sqrt();
|
||||
|
||||
let lambda1 = consthalf * trace + e;
|
||||
let lambda2 = consthalf * trace - e;
|
||||
|
||||
if (lambda1 - d).abs() < (lambda2 - d).abs() {
|
||||
lambda = lambda1;
|
||||
}
|
||||
else {
|
||||
lambda = lambda2;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Shift matrix
|
||||
for k in 0..curdim+1 {
|
||||
unsafe {
|
||||
let a = eigenvalues.unsafe_at((k,k));
|
||||
eigenvalues.unsafe_set((k,k), a - lambda);
|
||||
}
|
||||
}
|
||||
|
||||
for i in j + 1..::dim::<M>() {
|
||||
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
|
||||
// Givens rotation from left
|
||||
for k in 0..curdim {
|
||||
let x_i = unsafe { eigenvalues.unsafe_at((k,k)) };
|
||||
let x_j = unsafe { eigenvalues.unsafe_at((k+1,k)) };
|
||||
let r = (x_i*x_i + x_j*x_j).sqrt();
|
||||
let ctmp = x_i / r;
|
||||
let stmp = -x_j / r;
|
||||
|
||||
c[k] = ctmp;
|
||||
s[k] = stmp;
|
||||
|
||||
for j in k..(curdim+1) {
|
||||
|
||||
unsafe {
|
||||
let a = eigenvalues.unsafe_at((k,j));
|
||||
let b = eigenvalues.unsafe_at((k+1,j));
|
||||
|
||||
eigenvalues.unsafe_set((k,j), ctmp * a - stmp * b);
|
||||
eigenvalues.unsafe_set((k+1,j), stmp * a + ctmp * b);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Givens rotation from right applied to eigenvalues
|
||||
for k in 0..curdim {
|
||||
for i in 0..(k+2) {
|
||||
|
||||
unsafe {
|
||||
let a = eigenvalues.unsafe_at((i,k));
|
||||
let b = eigenvalues.unsafe_at((i,k+1));
|
||||
|
||||
|
||||
eigenvalues.unsafe_set((i,k), c[k] * a - s[k] * b);
|
||||
eigenvalues.unsafe_set((i,k+1), s[k] * a + c[k] * b);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Shift back
|
||||
for k in 0..curdim+1 {
|
||||
unsafe {
|
||||
let a = eigenvalues.unsafe_at((k,k));
|
||||
eigenvalues.unsafe_set((k,k), a + lambda);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Givens rotation from right applied to eigenvectors
|
||||
for k in 0..curdim {
|
||||
for i in 0..::dim::<M>() {
|
||||
|
||||
unsafe {
|
||||
let a = eigenvectors.unsafe_at((i,k));
|
||||
let b = eigenvectors.unsafe_at((i,k+1));
|
||||
|
||||
|
||||
eigenvectors.unsafe_set((i,k), c[k] * a - s[k] * b);
|
||||
eigenvectors.unsafe_set((i,k+1), s[k] * a + c[k] * b);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if stop {
|
||||
break;
|
||||
}
|
||||
iter = iter + 1;
|
||||
|
||||
let (q, r) = qr(&eigenvalues);;
|
||||
stop = true;
|
||||
|
||||
for j in 0..curdim {
|
||||
|
||||
// Check last row
|
||||
if unsafe { eigenvalues.unsafe_at((curdim, j)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// Check last column
|
||||
if unsafe { eigenvalues.unsafe_at((j, curdim)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if stop {
|
||||
|
||||
if curdim > 1 {
|
||||
curdim = curdim - 1;
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
eigenvalues = r * q;
|
||||
eigenvectors = eigenvectors * q;
|
||||
}
|
||||
|
||||
(eigenvectors, eigenvalues.diag())
|
||||
|
@ -164,3 +290,48 @@ pub fn cholesky<N, V, VS, M>(m: &M) -> Result<M, &'static str>
|
|||
|
||||
return Ok(out);
|
||||
}
|
||||
|
||||
/// Hessenberg
|
||||
/// Returns the matrix m in Hessenberg form and the corresponding similarity transformation
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `m` - matrix to transform
|
||||
///
|
||||
/// # Returns
|
||||
/// * First return value `q` - Similarity matrix p such that q * h * q^T = m
|
||||
/// * Second return value `h` - Matrix m in Hessenberg form
|
||||
pub fn hessenberg<N, V, M>(m: &M) -> (M, M)
|
||||
where N: BaseFloat,
|
||||
V: Indexable<usize, N> + Norm<N>,
|
||||
M: Copy + Eye + ColSlice<V> + Transpose + Indexable<(usize, usize), N> +
|
||||
Mul<M, Output = M> {
|
||||
|
||||
let mut h = m.clone();
|
||||
let (rows, cols) = h.shape();
|
||||
|
||||
let mut q : M = Eye::new_identity(cols);
|
||||
|
||||
if cols <= 2 {
|
||||
return (q, h);
|
||||
}
|
||||
|
||||
for ite in 0..(cols-2) {
|
||||
let mut v = h.col_slice(ite, ite+1, rows);
|
||||
|
||||
let alpha = Norm::norm(&v);
|
||||
|
||||
unsafe {
|
||||
let x = v.unsafe_at(0);
|
||||
v.unsafe_set(0, x - alpha);
|
||||
}
|
||||
|
||||
if !::is_zero(&v.normalize_mut()) {
|
||||
let p: M = householder_matrix(rows, ite+1, v);
|
||||
|
||||
q = q * p;
|
||||
h = p * h * p;
|
||||
}
|
||||
}
|
||||
|
||||
return (q, h);
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
|
||||
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky};
|
||||
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky, hessenberg};
|
||||
|
||||
mod decompositions;
|
||||
|
|
156
tests/mat.rs
156
tests/mat.rs
|
@ -3,7 +3,7 @@ extern crate rand;
|
|||
|
||||
use rand::random;
|
||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
|
||||
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag, Transpose, RowSlice, ColSlice};
|
||||
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag, Transpose, RowSlice, ColSlice, Shape};
|
||||
|
||||
macro_rules! test_inv_mat_impl(
|
||||
($t: ty) => (
|
||||
|
@ -63,28 +63,49 @@ macro_rules! test_cholesky_impl(
|
|||
);
|
||||
);
|
||||
|
||||
// NOTE: deactivated untile we get a better convergence rate.
|
||||
// macro_rules! test_eigen_qr_impl(
|
||||
// ($t: ty) => {
|
||||
// for _ in (0usize .. 10000) {
|
||||
// let randmat : $t = random();
|
||||
// // Make it symetric so that we can recompose the matrix to test at the end.
|
||||
// let randmat = na::transpose(&randmat) * randmat;
|
||||
//
|
||||
// let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100);
|
||||
//
|
||||
// let diag: $t = Diag::from_diag(&eigenvalues);
|
||||
//
|
||||
// let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
||||
//
|
||||
// println!("eigenvalues: {}", eigenvalues);
|
||||
// println!(" mat: {}", randmat);
|
||||
// println!("recomp: {}", recomp);
|
||||
//
|
||||
// assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
||||
// }
|
||||
// }
|
||||
// )
|
||||
macro_rules! test_hessenberg_impl(
|
||||
($t: ty) => (
|
||||
for _ in (0usize .. 10000) {
|
||||
|
||||
let randmat : $t = random();
|
||||
|
||||
let (q, h) = na::hessenberg(&randmat);
|
||||
let recomp = q * h * na::transpose(&q);
|
||||
|
||||
let (rows, cols) = h.shape();
|
||||
|
||||
// Check if `h` has zero entries below the first subdiagonal
|
||||
if cols > 2 {
|
||||
for j in 0..(cols-2) {
|
||||
for i in (j+2)..rows {
|
||||
assert!(na::approx_eq(&h[(i,j)], &0.0f64));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
assert!(na::approx_eq(&randmat, &recomp));
|
||||
}
|
||||
);
|
||||
);
|
||||
|
||||
macro_rules! test_eigen_qr_impl(
|
||||
($t: ty) => {
|
||||
for _ in (0usize .. 10000) {
|
||||
let randmat : $t = random();
|
||||
// Make it symetric so that we can recompose the matrix to test at the end.
|
||||
let randmat = na::transpose(&randmat) * randmat;
|
||||
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
|
||||
|
||||
let diag: $t = Diag::from_diag(&eigenvalues);
|
||||
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
||||
println!("eigenvalues: {:?}", eigenvalues);
|
||||
println!(" mat: {:?}", randmat);
|
||||
println!("recomp: {:?}", recomp);
|
||||
|
||||
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
#[test]
|
||||
fn test_transpose_mat1() {
|
||||
|
@ -532,36 +553,35 @@ fn test_qr_mat6() {
|
|||
test_qr_impl!(Mat6<f64>);
|
||||
}
|
||||
|
||||
// NOTE: deactivated until we get a better convergence rate.
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat1() {
|
||||
// test_eigen_qr_impl!(Mat1<f64>);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat2() {
|
||||
// test_eigen_qr_impl!(Mat2<f64>);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat3() {
|
||||
// test_eigen_qr_impl!(Mat3<f64>);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat4() {
|
||||
// test_eigen_qr_impl!(Mat4<f64>);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat5() {
|
||||
// test_eigen_qr_impl!(Mat5<f64>);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat6() {
|
||||
// test_eigen_qr_impl!(Mat6<f64>);
|
||||
// }
|
||||
#[test]
|
||||
fn test_eigen_qr_mat1() {
|
||||
test_eigen_qr_impl!(Mat1<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_eigen_qr_mat2() {
|
||||
test_eigen_qr_impl!(Mat2<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_eigen_qr_mat3() {
|
||||
test_eigen_qr_impl!(Mat3<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_eigen_qr_mat4() {
|
||||
test_eigen_qr_impl!(Mat4<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_eigen_qr_mat5() {
|
||||
test_eigen_qr_impl!(Mat5<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_eigen_qr_mat6() {
|
||||
test_eigen_qr_impl!(Mat6<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_from_fn() {
|
||||
|
@ -733,6 +753,36 @@ fn test_cholesky_mat6() {
|
|||
test_cholesky_impl!(Mat6<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat1() {
|
||||
test_hessenberg_impl!(Mat1<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat2() {
|
||||
test_hessenberg_impl!(Mat2<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat3() {
|
||||
test_hessenberg_impl!(Mat3<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat4() {
|
||||
test_hessenberg_impl!(Mat4<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat5() {
|
||||
test_hessenberg_impl!(Mat5<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hessenberg_mat6() {
|
||||
test_hessenberg_impl!(Mat6<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_transpose_square_mat() {
|
||||
let col_major_mat = &[0, 1, 2, 3,
|
||||
|
|
Loading…
Reference in New Issue