Implemented QR algorithm with initial transformation to Hessenberg form and Wilkinson shift for symmetric matrices

This commit is contained in:
Daniel 2015-09-22 00:19:45 +02:00
parent 6fee70bd19
commit c4753aaf65
4 changed files with 297 additions and 75 deletions

View File

@ -151,7 +151,8 @@ pub use structs::{
pub use linalg::{ pub use linalg::{
qr, qr,
householder_matrix, householder_matrix,
cholesky cholesky,
hessenberg
}; };
mod structs; mod structs;

View File

@ -1,5 +1,5 @@
use traits::operations::{Transpose, ApproxEq}; use traits::operations::{Transpose, ApproxEq};
use traits::structure::{ColSlice, Eye, Indexable, Diag, SquareMat, BaseFloat}; use traits::structure::{ColSlice, Eye, Indexable, Diag, SquareMat, BaseFloat, Cast};
use traits::geometry::Norm; use traits::geometry::Norm;
use std::cmp::min; use std::cmp::min;
use std::ops::{Mul, Add, Sub}; use std::ops::{Mul, Add, Sub};
@ -71,7 +71,7 @@ pub fn qr<N, V, M>(m: &M) -> (M, M)
(q, r) (q, r)
} }
/// Eigendecomposition of a square matrix using the qr algorithm. /// Eigendecomposition of a square symmetric matrix using the qr algorithm
pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V) pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
where N: BaseFloat, where N: BaseFloat,
V: Mul<M, Output = V>, V: Mul<M, Output = V>,
@ -79,39 +79,165 @@ pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> + M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> +
Sub<M, Output = M> + ColSlice<VS> + Sub<M, Output = M> + ColSlice<VS> +
ApproxEq<N> + Copy { ApproxEq<N> + Copy {
let mut eigenvectors: M = ::one::<M>();
let mut eigenvalues = *m; let (mut eigenvectors, mut eigenvalues) = hessenberg(m);
// let mut shifter: M = Eye::new_identity(rows);
// Allocate arrays for Givens rotation components
let mut c = Vec::<N>::with_capacity(::dim::<M>()-1);
let mut s = Vec::<N>::with_capacity(::dim::<M>()-1);
if ::dim::<M>() == 1 {
return (eigenvectors, eigenvalues.diag());
}
unsafe {
c.set_len(::dim::<M>()-1);
s.set_len(::dim::<M>()-1);
}
let mut iter = 0; let mut iter = 0;
for _ in 0..niter { let mut curdim = ::dim::<M>()-1;
let mut stop = true;
for _ in 0..::dim::<M>() {
let mut stop = false;
while !stop && iter < niter {
let lambda;
unsafe {
let a = eigenvalues.unsafe_at((curdim-1, curdim-1));
let b = eigenvalues.unsafe_at((curdim-1, curdim));
let c = eigenvalues.unsafe_at((curdim, curdim-1));
let d = eigenvalues.unsafe_at((curdim, curdim));
let trace = a + d;
let det = a * d - b * c;
let constquarter: N = Cast::from(0.25f64);
let consthalf: N = Cast::from(0.5f64);
let e = (constquarter * trace * trace - det).sqrt();
let lambda1 = consthalf * trace + e;
let lambda2 = consthalf * trace - e;
if (lambda1 - d).abs() < (lambda2 - d).abs() {
lambda = lambda1;
}
else {
lambda = lambda2;
}
}
// Shift matrix
for k in 0..curdim+1 {
unsafe {
let a = eigenvalues.unsafe_at((k,k));
eigenvalues.unsafe_set((k,k), a - lambda);
}
}
// Givens rotation from left
for k in 0..curdim {
let x_i = unsafe { eigenvalues.unsafe_at((k,k)) };
let x_j = unsafe { eigenvalues.unsafe_at((k+1,k)) };
let r = (x_i*x_i + x_j*x_j).sqrt();
let ctmp = x_i / r;
let stmp = -x_j / r;
c[k] = ctmp;
s[k] = stmp;
for j in k..(curdim+1) {
unsafe {
let a = eigenvalues.unsafe_at((k,j));
let b = eigenvalues.unsafe_at((k+1,j));
eigenvalues.unsafe_set((k,j), ctmp * a - stmp * b);
eigenvalues.unsafe_set((k+1,j), stmp * a + ctmp * b);
}
for j in 0..::dim::<M>() {
for i in 0..j {
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps {
stop = false;
break;
} }
} }
for i in j + 1..::dim::<M>() { // Givens rotation from right applied to eigenvalues
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps { for k in 0..curdim {
for i in 0..(k+2) {
unsafe {
let a = eigenvalues.unsafe_at((i,k));
let b = eigenvalues.unsafe_at((i,k+1));
eigenvalues.unsafe_set((i,k), c[k] * a - s[k] * b);
eigenvalues.unsafe_set((i,k+1), s[k] * a + c[k] * b);
}
}
}
// Shift back
for k in 0..curdim+1 {
unsafe {
let a = eigenvalues.unsafe_at((k,k));
eigenvalues.unsafe_set((k,k), a + lambda);
}
}
// Givens rotation from right applied to eigenvectors
for k in 0..curdim {
for i in 0..::dim::<M>() {
unsafe {
let a = eigenvectors.unsafe_at((i,k));
let b = eigenvectors.unsafe_at((i,k+1));
eigenvectors.unsafe_set((i,k), c[k] * a - s[k] * b);
eigenvectors.unsafe_set((i,k+1), s[k] * a + c[k] * b);
}
}
}
iter = iter + 1;
stop = true;
for j in 0..curdim {
// Check last row
if unsafe { eigenvalues.unsafe_at((curdim, j)) }.abs() >= *eps {
stop = false;
break;
}
// Check last column
if unsafe { eigenvalues.unsafe_at((j, curdim)) }.abs() >= *eps {
stop = false; stop = false;
break; break;
} }
} }
} }
if stop { if stop {
break;
if curdim > 1 {
curdim = curdim - 1;
}
else {
break;
}
} }
iter = iter + 1;
let (q, r) = qr(&eigenvalues);;
eigenvalues = r * q;
eigenvectors = eigenvectors * q;
} }
(eigenvectors, eigenvalues.diag()) (eigenvectors, eigenvalues.diag())
@ -164,3 +290,48 @@ pub fn cholesky<N, V, VS, M>(m: &M) -> Result<M, &'static str>
return Ok(out); return Ok(out);
} }
/// Hessenberg
/// Returns the matrix m in Hessenberg form and the corresponding similarity transformation
///
/// # Arguments
/// * `m` - matrix to transform
///
/// # Returns
/// * First return value `q` - Similarity matrix p such that q * h * q^T = m
/// * Second return value `h` - Matrix m in Hessenberg form
pub fn hessenberg<N, V, M>(m: &M) -> (M, M)
where N: BaseFloat,
V: Indexable<usize, N> + Norm<N>,
M: Copy + Eye + ColSlice<V> + Transpose + Indexable<(usize, usize), N> +
Mul<M, Output = M> {
let mut h = m.clone();
let (rows, cols) = h.shape();
let mut q : M = Eye::new_identity(cols);
if cols <= 2 {
return (q, h);
}
for ite in 0..(cols-2) {
let mut v = h.col_slice(ite, ite+1, rows);
let alpha = Norm::norm(&v);
unsafe {
let x = v.unsafe_at(0);
v.unsafe_set(0, x - alpha);
}
if !::is_zero(&v.normalize_mut()) {
let p: M = householder_matrix(rows, ite+1, v);
q = q * p;
h = p * h * p;
}
}
return (q, h);
}

View File

@ -1,4 +1,4 @@
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky}; pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky, hessenberg};
mod decompositions; mod decompositions;

View File

@ -3,7 +3,7 @@ extern crate rand;
use rand::random; use rand::random;
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3, use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag, Transpose, RowSlice, ColSlice}; OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag, Transpose, RowSlice, ColSlice, Shape};
macro_rules! test_inv_mat_impl( macro_rules! test_inv_mat_impl(
($t: ty) => ( ($t: ty) => (
@ -63,28 +63,49 @@ macro_rules! test_cholesky_impl(
); );
); );
// NOTE: deactivated untile we get a better convergence rate. macro_rules! test_hessenberg_impl(
// macro_rules! test_eigen_qr_impl( ($t: ty) => (
// ($t: ty) => { for _ in (0usize .. 10000) {
// for _ in (0usize .. 10000) {
// let randmat : $t = random(); let randmat : $t = random();
// // Make it symetric so that we can recompose the matrix to test at the end.
// let randmat = na::transpose(&randmat) * randmat; let (q, h) = na::hessenberg(&randmat);
// let recomp = q * h * na::transpose(&q);
// let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100);
// let (rows, cols) = h.shape();
// let diag: $t = Diag::from_diag(&eigenvalues);
// // Check if `h` has zero entries below the first subdiagonal
// let recomp = eigenvectors * diag * na::transpose(&eigenvectors); if cols > 2 {
// for j in 0..(cols-2) {
// println!("eigenvalues: {}", eigenvalues); for i in (j+2)..rows {
// println!(" mat: {}", randmat); assert!(na::approx_eq(&h[(i,j)], &0.0f64));
// println!("recomp: {}", recomp); }
// }
// assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2)); }
// }
// } assert!(na::approx_eq(&randmat, &recomp));
// ) }
);
);
macro_rules! test_eigen_qr_impl(
($t: ty) => {
for _ in (0usize .. 10000) {
let randmat : $t = random();
// Make it symetric so that we can recompose the matrix to test at the end.
let randmat = na::transpose(&randmat) * randmat;
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
let diag: $t = Diag::from_diag(&eigenvalues);
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
println!("eigenvalues: {:?}", eigenvalues);
println!(" mat: {:?}", randmat);
println!("recomp: {:?}", recomp);
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
}
}
);
#[test] #[test]
fn test_transpose_mat1() { fn test_transpose_mat1() {
@ -532,36 +553,35 @@ fn test_qr_mat6() {
test_qr_impl!(Mat6<f64>); test_qr_impl!(Mat6<f64>);
} }
// NOTE: deactivated until we get a better convergence rate. #[test]
// #[test] fn test_eigen_qr_mat1() {
// fn test_eigen_qr_mat1() { test_eigen_qr_impl!(Mat1<f64>);
// test_eigen_qr_impl!(Mat1<f64>); }
// }
// #[test]
// #[test] fn test_eigen_qr_mat2() {
// fn test_eigen_qr_mat2() { test_eigen_qr_impl!(Mat2<f64>);
// test_eigen_qr_impl!(Mat2<f64>); }
// }
// #[test]
// #[test] fn test_eigen_qr_mat3() {
// fn test_eigen_qr_mat3() { test_eigen_qr_impl!(Mat3<f64>);
// test_eigen_qr_impl!(Mat3<f64>); }
// }
// #[test]
// #[test] fn test_eigen_qr_mat4() {
// fn test_eigen_qr_mat4() { test_eigen_qr_impl!(Mat4<f64>);
// test_eigen_qr_impl!(Mat4<f64>); }
// }
// #[test]
// #[test] fn test_eigen_qr_mat5() {
// fn test_eigen_qr_mat5() { test_eigen_qr_impl!(Mat5<f64>);
// test_eigen_qr_impl!(Mat5<f64>); }
// }
// #[test]
// #[test] fn test_eigen_qr_mat6() {
// fn test_eigen_qr_mat6() { test_eigen_qr_impl!(Mat6<f64>);
// test_eigen_qr_impl!(Mat6<f64>); }
// }
#[test] #[test]
fn test_from_fn() { fn test_from_fn() {
@ -733,6 +753,36 @@ fn test_cholesky_mat6() {
test_cholesky_impl!(Mat6<f64>); test_cholesky_impl!(Mat6<f64>);
} }
#[test]
fn test_hessenberg_mat1() {
test_hessenberg_impl!(Mat1<f64>);
}
#[test]
fn test_hessenberg_mat2() {
test_hessenberg_impl!(Mat2<f64>);
}
#[test]
fn test_hessenberg_mat3() {
test_hessenberg_impl!(Mat3<f64>);
}
#[test]
fn test_hessenberg_mat4() {
test_hessenberg_impl!(Mat4<f64>);
}
#[test]
fn test_hessenberg_mat5() {
test_hessenberg_impl!(Mat5<f64>);
}
#[test]
fn test_hessenberg_mat6() {
test_hessenberg_impl!(Mat6<f64>);
}
#[test] #[test]
fn test_transpose_square_mat() { fn test_transpose_square_mat() {
let col_major_mat = &[0, 1, 2, 3, let col_major_mat = &[0, 1, 2, 3,