Add sections to the UnitComplex documentation
This commit is contained in:
parent
99ac7a8e08
commit
c1372c3041
|
@ -50,7 +50,7 @@ use crate::geometry::Point;
|
||||||
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
|
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
|
||||||
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
|
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
|
||||||
///
|
///
|
||||||
/// # Conversion to a matrix
|
/// # Conversion
|
||||||
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
|
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
|
||||||
///
|
///
|
||||||
#[repr(C)]
|
#[repr(C)]
|
||||||
|
|
|
@ -7,7 +7,26 @@ use crate::geometry::{Point2, Rotation2};
|
||||||
use simba::scalar::RealField;
|
use simba::scalar::RealField;
|
||||||
use simba::simd::SimdRealField;
|
use simba::simd::SimdRealField;
|
||||||
|
|
||||||
/// A complex number with a norm equal to 1.
|
/// A 2D rotation represented as a complex number with magnitude 1.
|
||||||
|
///
|
||||||
|
/// All the methods specific [`UnitComplex`](crate::UnitComplex) are listed here. You may also
|
||||||
|
/// read the documentation of the [`Complex`](crate::Complex) type which
|
||||||
|
/// is used internally and accessible with `unit_complex.complex()`.
|
||||||
|
///
|
||||||
|
/// # Construction
|
||||||
|
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
|
||||||
|
/// * [From a 2D rotation angle <span style="float:right;">`new`, `from_cos_sin_unchecked`…</span>](#construction-from-a-2d-rotation-angle)
|
||||||
|
/// * [From an existing 2D matrix or complex number <span style="float:right;">`from_matrix`, `rotation_to`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-complex-number)
|
||||||
|
/// * [From two vectors <span style="float:right;">`rotation_between`, `scaled_rotation_between_axis`…</span>](#construction-from-two-vectors)
|
||||||
|
///
|
||||||
|
/// # Transformation and composition
|
||||||
|
/// * [Angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#angle-extraction)
|
||||||
|
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
|
||||||
|
/// * [Conjugation and inversion <span style="float:right;">`conjugate`, `inverse_mut`…</span>](#conjugation-and-inversion)
|
||||||
|
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
|
||||||
|
///
|
||||||
|
/// # Conversion
|
||||||
|
/// * [Conversion to a matrix <span style="float:right;">`to_rotation_matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
|
||||||
pub type UnitComplex<N> = Unit<Complex<N>>;
|
pub type UnitComplex<N> = Unit<Complex<N>>;
|
||||||
|
|
||||||
impl<N: SimdRealField> Normed for Complex<N> {
|
impl<N: SimdRealField> Normed for Complex<N> {
|
||||||
|
@ -40,6 +59,7 @@ impl<N: SimdRealField> Normed for Complex<N> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// # Angle extraction
|
||||||
impl<N: SimdRealField> UnitComplex<N>
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
where
|
where
|
||||||
N::Element: SimdRealField,
|
N::Element: SimdRealField,
|
||||||
|
@ -115,24 +135,28 @@ where
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The underlying complex number.
|
/// The rotation angle needed to make `self` and `other` coincide.
|
||||||
///
|
|
||||||
/// Same as `self.as_ref()`.
|
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
/// ```
|
/// ```
|
||||||
/// # extern crate num_complex;
|
/// # #[macro_use] extern crate approx;
|
||||||
/// # use num_complex::Complex;
|
|
||||||
/// # use nalgebra::UnitComplex;
|
/// # use nalgebra::UnitComplex;
|
||||||
/// let angle = 1.78f32;
|
/// let rot1 = UnitComplex::new(0.1);
|
||||||
/// let rot = UnitComplex::new(angle);
|
/// let rot2 = UnitComplex::new(1.7);
|
||||||
/// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
|
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
|
||||||
/// ```
|
/// ```
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn complex(&self) -> &Complex<N> {
|
pub fn angle_to(&self, other: &Self) -> N {
|
||||||
self.as_ref()
|
let delta = self.rotation_to(other);
|
||||||
|
delta.angle()
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// # Conjugation and inversion
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// Compute the conjugate of this unit complex number.
|
/// Compute the conjugate of this unit complex number.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -166,42 +190,6 @@ where
|
||||||
self.conjugate()
|
self.conjugate()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The rotation angle needed to make `self` and `other` coincide.
|
|
||||||
///
|
|
||||||
/// # Example
|
|
||||||
/// ```
|
|
||||||
/// # #[macro_use] extern crate approx;
|
|
||||||
/// # use nalgebra::UnitComplex;
|
|
||||||
/// let rot1 = UnitComplex::new(0.1);
|
|
||||||
/// let rot2 = UnitComplex::new(1.7);
|
|
||||||
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
|
|
||||||
/// ```
|
|
||||||
#[inline]
|
|
||||||
pub fn angle_to(&self, other: &Self) -> N {
|
|
||||||
let delta = self.rotation_to(other);
|
|
||||||
delta.angle()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The unit complex number needed to make `self` and `other` coincide.
|
|
||||||
///
|
|
||||||
/// The result is such that: `self.rotation_to(other) * self == other`.
|
|
||||||
///
|
|
||||||
/// # Example
|
|
||||||
/// ```
|
|
||||||
/// # #[macro_use] extern crate approx;
|
|
||||||
/// # use nalgebra::UnitComplex;
|
|
||||||
/// let rot1 = UnitComplex::new(0.1);
|
|
||||||
/// let rot2 = UnitComplex::new(1.7);
|
|
||||||
/// let rot_to = rot1.rotation_to(&rot2);
|
|
||||||
///
|
|
||||||
/// assert_relative_eq!(rot_to * rot1, rot2);
|
|
||||||
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
|
|
||||||
/// ```
|
|
||||||
#[inline]
|
|
||||||
pub fn rotation_to(&self, other: &Self) -> Self {
|
|
||||||
other / self
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Compute in-place the conjugate of this unit complex number.
|
/// Compute in-place the conjugate of this unit complex number.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -237,25 +225,13 @@ where
|
||||||
pub fn inverse_mut(&mut self) {
|
pub fn inverse_mut(&mut self) {
|
||||||
self.conjugate_mut()
|
self.conjugate_mut()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Raise this unit complex number to a given floating power.
|
|
||||||
///
|
|
||||||
/// This returns the unit complex number that identifies a rotation angle equal to
|
|
||||||
/// `self.angle() × n`.
|
|
||||||
///
|
|
||||||
/// # Example
|
|
||||||
/// ```
|
|
||||||
/// # #[macro_use] extern crate approx;
|
|
||||||
/// # use nalgebra::UnitComplex;
|
|
||||||
/// let rot = UnitComplex::new(0.78);
|
|
||||||
/// let pow = rot.powf(2.0);
|
|
||||||
/// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
|
|
||||||
/// ```
|
|
||||||
#[inline]
|
|
||||||
pub fn powf(&self, n: N) -> Self {
|
|
||||||
Self::from_angle(self.angle() * n)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// # Conversion to a matrix
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// Builds the rotation matrix corresponding to this unit complex number.
|
/// Builds the rotation matrix corresponding to this unit complex number.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -290,7 +266,13 @@ where
|
||||||
pub fn to_homogeneous(&self) -> Matrix3<N> {
|
pub fn to_homogeneous(&self) -> Matrix3<N> {
|
||||||
self.to_rotation_matrix().to_homogeneous()
|
self.to_rotation_matrix().to_homogeneous()
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Transformation of a vector or a point
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// Rotate the given point by this unit complex number.
|
/// Rotate the given point by this unit complex number.
|
||||||
///
|
///
|
||||||
/// This is the same as the multiplication `self * pt`.
|
/// This is the same as the multiplication `self * pt`.
|
||||||
|
@ -376,7 +358,13 @@ where
|
||||||
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector2<N>>) -> Unit<Vector2<N>> {
|
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector2<N>>) -> Unit<Vector2<N>> {
|
||||||
self.inverse() * v
|
self.inverse() * v
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Interpolation
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// Spherical linear interpolation between two rotations represented as unit complex numbers.
|
/// Spherical linear interpolation between two rotations represented as unit complex numbers.
|
||||||
///
|
///
|
||||||
/// # Examples:
|
/// # Examples:
|
||||||
|
@ -392,7 +380,6 @@ where
|
||||||
///
|
///
|
||||||
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
|
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
|
||||||
/// ```
|
/// ```
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn slerp(&self, other: &Self, t: N) -> Self {
|
pub fn slerp(&self, other: &Self, t: N) -> Self {
|
||||||
Self::new(self.angle() * (N::one() - t) + other.angle() * t)
|
Self::new(self.angle() * (N::one() - t) + other.angle() * t)
|
||||||
|
|
|
@ -13,6 +13,7 @@ use crate::geometry::{Rotation2, UnitComplex};
|
||||||
use simba::scalar::RealField;
|
use simba::scalar::RealField;
|
||||||
use simba::simd::SimdRealField;
|
use simba::simd::SimdRealField;
|
||||||
|
|
||||||
|
/// # Identity
|
||||||
impl<N: SimdRealField> UnitComplex<N>
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
where
|
where
|
||||||
N::Element: SimdRealField,
|
N::Element: SimdRealField,
|
||||||
|
@ -32,7 +33,13 @@ where
|
||||||
pub fn identity() -> Self {
|
pub fn identity() -> Self {
|
||||||
Self::new_unchecked(Complex::new(N::one(), N::zero()))
|
Self::new_unchecked(Complex::new(N::one(), N::zero()))
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Construction from a 2D rotation angle
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// Builds the unit complex number corresponding to the rotation with the given angle.
|
/// Builds the unit complex number corresponding to the rotation with the given angle.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -100,6 +107,30 @@ where
|
||||||
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
|
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
|
||||||
Self::from_angle(axisangle[0])
|
Self::from_angle(axisangle[0])
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Construction from an existing 2D matrix or complex number
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
|
/// The underlying complex number.
|
||||||
|
///
|
||||||
|
/// Same as `self.as_ref()`.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # extern crate num_complex;
|
||||||
|
/// # use num_complex::Complex;
|
||||||
|
/// # use nalgebra::UnitComplex;
|
||||||
|
/// let angle = 1.78f32;
|
||||||
|
/// let rot = UnitComplex::new(angle);
|
||||||
|
/// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
pub fn complex(&self) -> &Complex<N> {
|
||||||
|
self.as_ref()
|
||||||
|
}
|
||||||
|
|
||||||
/// Creates a new unit complex number from a complex number.
|
/// Creates a new unit complex number from a complex number.
|
||||||
///
|
///
|
||||||
|
@ -165,6 +196,50 @@ where
|
||||||
Rotation2::from_matrix_eps(m, eps, max_iter, guess).into()
|
Rotation2::from_matrix_eps(m, eps, max_iter, guess).into()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// The unit complex number needed to make `self` and `other` coincide.
|
||||||
|
///
|
||||||
|
/// The result is such that: `self.rotation_to(other) * self == other`.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # #[macro_use] extern crate approx;
|
||||||
|
/// # use nalgebra::UnitComplex;
|
||||||
|
/// let rot1 = UnitComplex::new(0.1);
|
||||||
|
/// let rot2 = UnitComplex::new(1.7);
|
||||||
|
/// let rot_to = rot1.rotation_to(&rot2);
|
||||||
|
///
|
||||||
|
/// assert_relative_eq!(rot_to * rot1, rot2);
|
||||||
|
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
pub fn rotation_to(&self, other: &Self) -> Self {
|
||||||
|
other / self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Raise this unit complex number to a given floating power.
|
||||||
|
///
|
||||||
|
/// This returns the unit complex number that identifies a rotation angle equal to
|
||||||
|
/// `self.angle() × n`.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # #[macro_use] extern crate approx;
|
||||||
|
/// # use nalgebra::UnitComplex;
|
||||||
|
/// let rot = UnitComplex::new(0.78);
|
||||||
|
/// let pow = rot.powf(2.0);
|
||||||
|
/// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
pub fn powf(&self, n: N) -> Self {
|
||||||
|
Self::from_angle(self.angle() * n)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Construction from two vectors
|
||||||
|
impl<N: SimdRealField> UnitComplex<N>
|
||||||
|
where
|
||||||
|
N::Element: SimdRealField,
|
||||||
|
{
|
||||||
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
|
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
|
||||||
/// direction.
|
/// direction.
|
||||||
///
|
///
|
||||||
|
|
Loading…
Reference in New Issue