Addition of matrix exponent for static size matrices.

This commit is contained in:
Fredrik Jansson 2020-04-01 22:36:05 +02:00
parent e6c3b88c3d
commit c0a6df55b1
4 changed files with 545 additions and 0 deletions

445
src/linalg/exp.rs Normal file
View File

@ -0,0 +1,445 @@
use crate::{
base::{
allocator::Allocator,
dimension::{DimMin, DimMinimum, DimName},
DefaultAllocator,
},
try_convert, ComplexField, MatrixN, RealField,
};
// https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py
struct ExpmPadeHelper<N, R>
where
N: RealField,
R: DimName + DimMin<R>,
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
{
use_exact_norm: bool,
ident: MatrixN<N, R>,
a: MatrixN<N, R>,
a2: Option<MatrixN<N, R>>,
a4: Option<MatrixN<N, R>>,
a6: Option<MatrixN<N, R>>,
a8: Option<MatrixN<N, R>>,
a10: Option<MatrixN<N, R>>,
d4_exact: Option<N>,
d6_exact: Option<N>,
d8_exact: Option<N>,
d10_exact: Option<N>,
d4_approx: Option<N>,
d6_approx: Option<N>,
d8_approx: Option<N>,
d10_approx: Option<N>,
}
impl<N, R> ExpmPadeHelper<N, R>
where
N: RealField,
R: DimName + DimMin<R>,
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
{
fn new(a: MatrixN<N, R>, use_exact_norm: bool) -> Self {
ExpmPadeHelper {
use_exact_norm,
ident: MatrixN::<N, R>::identity(),
a,
a2: None,
a4: None,
a6: None,
a8: None,
a10: None,
d4_exact: None,
d6_exact: None,
d8_exact: None,
d10_exact: None,
d4_approx: None,
d6_approx: None,
d8_approx: None,
d10_approx: None,
}
}
fn a2(&self) -> &MatrixN<N, R> {
if self.a2.is_none() {
let ap = &self.a2 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
unsafe {
*ap = Some(&self.a * &self.a);
}
}
self.a2.as_ref().unwrap()
}
fn a4(&self) -> &MatrixN<N, R> {
if self.a4.is_none() {
let ap = &self.a4 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
let a2 = self.a2();
unsafe {
*ap = Some(a2 * a2);
}
}
self.a4.as_ref().unwrap()
}
fn a6(&self) -> &MatrixN<N, R> {
if self.a6.is_none() {
let a2 = self.a2();
let a4 = self.a4();
let ap = &self.a6 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
unsafe {
*ap = Some(a4 * a2);
}
}
self.a6.as_ref().unwrap()
}
fn a8(&self) -> &MatrixN<N, R> {
if self.a8.is_none() {
let a2 = self.a2();
let a6 = self.a6();
let ap = &self.a8 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
unsafe {
*ap = Some(a6 * a2);
}
}
self.a8.as_ref().unwrap()
}
fn a10(&mut self) -> &MatrixN<N, R> {
if self.a10.is_none() {
let a4 = self.a4();
let a6 = self.a6();
let ap = &self.a10 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
unsafe {
*ap = Some(a6 * a4);
}
}
self.a10.as_ref().unwrap()
}
fn d4_tight(&mut self) -> N {
if self.d4_exact.is_none() {
self.d4_exact = Some(self.a4().amax().powf(N::from_f64(0.25).unwrap()));
}
self.d4_exact.unwrap()
}
fn d6_tight(&mut self) -> N {
if self.d6_exact.is_none() {
self.d6_exact = Some(self.a6().amax().powf(N::from_f64(1.0 / 6.0).unwrap()));
}
self.d6_exact.unwrap()
}
fn d8_tight(&mut self) -> N {
if self.d8_exact.is_none() {
self.d8_exact = Some(self.a8().amax().powf(N::from_f64(1.0 / 8.0).unwrap()));
}
self.d8_exact.unwrap()
}
fn d10_tight(&mut self) -> N {
if self.d10_exact.is_none() {
self.d10_exact = Some(self.a10().amax().powf(N::from_f64(1.0 / 10.0).unwrap()));
}
self.d10_exact.unwrap()
}
fn d4_loose(&mut self) -> N {
if self.use_exact_norm {
return self.d4_tight();
}
if self.d4_exact.is_some() {
return self.d4_exact.unwrap();
}
if self.d4_approx.is_none() {
self.d4_approx = Some(self.a4().amax().powf(N::from_f64(0.25).unwrap()));
}
self.d4_approx.unwrap()
}
fn d6_loose(&mut self) -> N {
if self.use_exact_norm {
return self.d6_tight();
}
if self.d6_exact.is_some() {
return self.d6_exact.unwrap();
}
if self.d6_approx.is_none() {
self.d6_approx = Some(self.a6().amax().powf(N::from_f64(1.0 / 6.0).unwrap()));
}
self.d6_approx.unwrap()
}
fn d8_loose(&mut self) -> N {
if self.use_exact_norm {
return self.d8_tight();
}
if self.d8_exact.is_some() {
return self.d8_exact.unwrap();
}
if self.d8_approx.is_none() {
self.d8_approx = Some(self.a8().amax().powf(N::from_f64(1.0 / 8.0).unwrap()));
}
self.d8_approx.unwrap()
}
fn d10_loose(&mut self) -> N {
if self.use_exact_norm {
return self.d10_tight();
}
if self.d10_exact.is_some() {
return self.d10_exact.unwrap();
}
if self.d10_approx.is_none() {
self.d10_approx = Some(self.a10().amax().powf(N::from_f64(1.0 / 10.0).unwrap()));
}
self.d10_approx.unwrap()
}
fn pade3(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
let b = [
N::from_f64(120.0).unwrap(),
N::from_f64(60.0).unwrap(),
N::from_f64(12.0).unwrap(),
N::from_f64(1.0).unwrap(),
];
let u = &self.a * (self.a2() * b[3] + &self.ident * b[1]);
let v = self.a2() * b[2] + &self.ident * b[0];
(u, v)
}
fn pade5(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
let b = [
N::from_f64(30240.0).unwrap(),
N::from_f64(15120.0).unwrap(),
N::from_f64(3360.0).unwrap(),
N::from_f64(420.0).unwrap(),
N::from_f64(30.0).unwrap(),
N::from_f64(1.0).unwrap(),
];
let u = &self.a * (self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]);
let v = self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0];
(u, v)
}
fn pade7(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
let b = [
N::from_f64(17297280.0).unwrap(),
N::from_f64(8648640.0).unwrap(),
N::from_f64(1995840.0).unwrap(),
N::from_f64(277200.0).unwrap(),
N::from_f64(25200.0).unwrap(),
N::from_f64(1512.0).unwrap(),
N::from_f64(56.0).unwrap(),
N::from_f64(1.0).unwrap(),
];
let u =
&self.a * (self.a6() * b[7] + self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]);
let v = self.a6() * b[6] + self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0];
(u, v)
}
fn pade9(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
let b = [
N::from_f64(17643225600.0).unwrap(),
N::from_f64(8821612800.0).unwrap(),
N::from_f64(2075673600.0).unwrap(),
N::from_f64(302702400.0).unwrap(),
N::from_f64(30270240.0).unwrap(),
N::from_f64(2162160.0).unwrap(),
N::from_f64(110880.0).unwrap(),
N::from_f64(3960.0).unwrap(),
N::from_f64(90.0).unwrap(),
N::from_f64(1.0).unwrap(),
];
let u = &self.a
* (self.a8() * b[9]
+ self.a6() * b[7]
+ self.a4() * b[5]
+ self.a2() * b[3]
+ &self.ident * b[1]);
let v = self.a8() * b[8]
+ self.a6() * b[6]
+ self.a4() * b[4]
+ self.a2() * b[2]
+ &self.ident * b[0];
(u, v)
}
fn pade13_scaled(&mut self, s: u64) -> (MatrixN<N, R>, MatrixN<N, R>) {
let b = [
N::from_f64(64764752532480000.0).unwrap(),
N::from_f64(32382376266240000.0).unwrap(),
N::from_f64(7771770303897600.0).unwrap(),
N::from_f64(1187353796428800.0).unwrap(),
N::from_f64(129060195264000.0).unwrap(),
N::from_f64(10559470521600.0).unwrap(),
N::from_f64(670442572800.0).unwrap(),
N::from_f64(33522128640.0).unwrap(),
N::from_f64(1323241920.0).unwrap(),
N::from_f64(40840800.0).unwrap(),
N::from_f64(960960.0).unwrap(),
N::from_f64(16380.0).unwrap(),
N::from_f64(182.0).unwrap(),
N::from_f64(1.0).unwrap(),
];
let s = s as f64;
let mb = &self.a * N::from_f64(2.0.powf(-s)).unwrap();
let mb2 = self.a2() * N::from_f64(2.0.powf(-2.0 * s)).unwrap();
let mb4 = self.a4() * N::from_f64(2.0.powf(-4.0 * s)).unwrap();
let mb6 = self.a6() * N::from_f64(2.0.powf(-6.0 * s)).unwrap();
let u2 = &mb6 * (&mb6 * b[13] + &mb4 * b[11] + &mb2 * b[9]);
let u = &mb * (&u2 + &mb6 * b[7] + &mb4 * b[5] + &mb2 * b[3] + &self.ident * b[1]);
let v2 = &mb6 * (&mb6 * b[12] + &mb4 * b[10] + &mb2 * b[8]);
let v = v2 + &mb6 * b[6] + &mb4 * b[4] + &mb2 * b[2] + &self.ident * b[0];
(u, v)
}
}
fn factorial(n: u128) -> u128 {
if n == 1 {
return 1;
}
n * factorial(n - 1)
}
fn onenorm_matrix_power_nnm<N, R>(a: &MatrixN<N, R>, p: u64) -> N
where
N: RealField,
R: DimName,
DefaultAllocator: Allocator<N, R, R>,
{
let mut v = MatrixN::<N, R>::repeat(N::from_f64(1.0).unwrap());
let m = a.transpose();
for _ in 0..p {
v = &m * v;
}
v.amax()
}
fn ell<N, R>(a: &MatrixN<N, R>, m: u64) -> u64
where
N: RealField,
R: DimName,
DefaultAllocator: Allocator<N, R, R>,
{
// 2m choose m = (2m)!/(m! * (2m-m)!)
let a_abs_onenorm = onenorm_matrix_power_nnm(&a.abs(), 2 * m + 1);
if a_abs_onenorm == N::zero() {
return 0;
}
let choose_2m_m =
factorial(2 * m as u128) / (factorial(m as u128) * factorial(2 * m as u128 - m as u128));
let abs_c_recip = choose_2m_m * factorial(2 * m as u128 + 1);
let alpha = a_abs_onenorm / a.amax();
let alpha = alpha / N::from_u128(abs_c_recip).unwrap();
let u = N::from_f64(2_f64.powf(-53.0)).unwrap();
let log2_alpha_div_u = try_convert((alpha / u).log2()).unwrap();
let value = (log2_alpha_div_u / (2.0 * m as f64)).ceil();
if value > 0.0 {
value as u64
} else {
0
}
}
fn solve_p_q<N, R>(u: MatrixN<N, R>, v: MatrixN<N, R>) -> MatrixN<N, R>
where
N: ComplexField,
R: DimMin<R, Output = R> + DimName,
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
{
let p = &u + &v;
let q = &v - &u;
q.lu().solve(&p).unwrap()
}
impl<N: RealField, R: DimMin<R, Output = R> + DimName> MatrixN<N, R>
where
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
{
/// Computes exp of this matrix
pub fn exp(&self) -> Self {
// Simple case
if self.nrows() == 1 {
return self.clone().map(|v| v.exp());
}
let mut h = ExpmPadeHelper::new(self.clone(), true);
let eta_1 = N::max(h.d4_loose(), h.d6_loose());
if eta_1 < N::from_f64(1.495585217958292e-002).unwrap() && ell(&h.a, 3) == 0 {
let (u, v) = h.pade3();
return solve_p_q(u, v);
}
let eta_2 = N::max(h.d4_tight(), h.d6_loose());
if eta_2 < N::from_f64(2.539398330063230e-001).unwrap() && ell(&h.a, 5) == 0 {
let (u, v) = h.pade5();
return solve_p_q(u, v);
}
let eta_3 = N::max(h.d6_tight(), h.d8_loose());
if eta_3 < N::from_f64(9.504178996162932e-001).unwrap() && ell(&h.a, 7) == 0 {
let (u, v) = h.pade7();
return solve_p_q(u, v);
}
if eta_3 < N::from_f64(2.097847961257068e+000).unwrap() && ell(&h.a, 9) == 0 {
let (u, v) = h.pade9();
return solve_p_q(u, v);
}
let eta_4 = N::max(h.d8_loose(), h.d10_loose());
let eta_5 = N::min(eta_3, eta_4);
let theta_13 = N::from_f64(4.25).unwrap();
let mut s = if eta_5 == N::zero() {
0
} else {
let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap();
if l2 < 0.0 {
0
} else {
l2 as u64
}
};
s += ell(
&(&h.a * N::from_f64(2.0_f64.powf(-(s as f64))).unwrap()),
13,
);
let (u, v) = h.pade13_scaled(s);
let mut x = solve_p_q(u, v);
for _ in 0..s {
x = &x * &x;
}
x
}
}

View File

@ -5,6 +5,7 @@ mod bidiagonal;
mod cholesky; mod cholesky;
mod convolution; mod convolution;
mod determinant; mod determinant;
mod exp;
mod full_piv_lu; mod full_piv_lu;
pub mod givens; pub mod givens;
mod hessenberg; mod hessenberg;

97
tests/linalg/exp.rs Normal file
View File

@ -0,0 +1,97 @@
#[cfg(test)]
mod tests {
//https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/tests/test_matfuncs.py
#[test]
fn exp() {
use nalgebra::{Matrix1, Matrix2, Matrix3};
{
let m = Matrix1::new(1.0);
let f = m.exp();
assert_eq!(f, Matrix1::new(1_f64.exp()));
}
{
let m = Matrix2::new(0.0, 1.0, 0.0, 0.0);
assert_eq!(m.exp(), Matrix2::new(1.0, 1.0, 0.0, 1.0));
}
{
let a: f64 = 1.0;
let b: f64 = 2.0;
let c: f64 = 3.0;
let d: f64 = 4.0;
let m = Matrix2::new(a, b, c, d);
let delta = ((a - d).powf(2.0) + 4.0 * b * c).sqrt();
let delta_2 = delta / 2.0;
let ad_2 = (a + d) / 2.0;
let m11 = ad_2.exp() * (delta * delta_2.cosh() + (a - d) * delta_2.sinh());
let m12 = 2.0 * b * ad_2.exp() * delta_2.sinh();
let m21 = 2.0 * c * ad_2.exp() * delta_2.sinh();
let m22 = ad_2.exp() * (delta * delta_2.cosh() + (d - a) * delta_2.sinh());
let f = Matrix2::new(m11, m12, m21, m22) / delta;
assert!((f - m.exp()).iter().all(|v| v.abs() <= 0.00005));
}
{
// https://mathworld.wolfram.com/MatrixExponential.html
use rand::{
distributions::{Distribution, Uniform},
thread_rng,
};
let mut rng = thread_rng();
let dist = Uniform::new(-10.0, 10.0);
loop {
let a: f64 = dist.sample(&mut rng);
let b: f64 = dist.sample(&mut rng);
let c: f64 = dist.sample(&mut rng);
let d: f64 = dist.sample(&mut rng);
let m = Matrix2::new(a, b, c, d);
let delta_sq = (a - d).powf(2.0) + 4.0 * b * c;
if delta_sq < 0.0 {
continue;
}
let delta = delta_sq.sqrt();
let delta_2 = delta / 2.0;
let ad_2 = (a + d) / 2.0;
let m11 = ad_2.exp() * (delta * delta_2.cosh() + (a - d) * delta_2.sinh());
let m12 = 2.0 * b * ad_2.exp() * delta_2.sinh();
let m21 = 2.0 * c * ad_2.exp() * delta_2.sinh();
let m22 = ad_2.exp() * (delta * delta_2.cosh() + (d - a) * delta_2.sinh());
let f = Matrix2::new(m11, m12, m21, m22) / delta;
println!("a: {}", m);
assert!((f - m.exp()).iter().all(|v| v.abs() <= 0.00005));
break;
}
}
{
let m = Matrix3::new(1.0, 3.0, 0.0, 0.0, 1.0, 5.0, 0.0, 0.0, 2.0);
let e1 = 1.0_f64.exp();
let e2 = 2.0_f64.exp();
let f = Matrix3::new(
e1,
3.0 * e1,
15.0 * (e2 - 2.0 * e1),
0.0,
e1,
5.0 * (e2 - e1),
0.0,
0.0,
e2,
);
assert!((f - m.exp()).iter().all(|v| v.abs() <= 0.00005));
}
}
}

View File

@ -1,7 +1,9 @@
mod balancing; mod balancing;
mod bidiagonal; mod bidiagonal;
mod cholesky; mod cholesky;
mod convolution;
mod eigen; mod eigen;
mod exp;
mod full_piv_lu; mod full_piv_lu;
mod hessenberg; mod hessenberg;
mod inverse; mod inverse;