Run cargo fmt.
This commit is contained in:
parent
bc1b62d06a
commit
bbb3be512e
|
@ -50,11 +50,13 @@ fn mat_div_scalar(b: &mut criterion::Criterion) {
|
|||
let a = DMatrix::from_row_slice(1000, 1000, &vec![2.0; 1000000]);
|
||||
let n = 42.0;
|
||||
|
||||
b.bench_function("mat_div_scalar", move |bh| bh.iter(|| {
|
||||
b.bench_function("mat_div_scalar", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut aa = a.clone();
|
||||
let mut b = aa.slice_mut((0, 0), (1000, 1000));
|
||||
b /= n
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn mat100_add_mat100(bench: &mut criterion::Criterion) {
|
||||
|
@ -138,9 +140,11 @@ fn copy_from(bench: &mut criterion::Criterion) {
|
|||
let a = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let mut b = DMatrix::<f64>::new_random(1000, 1000);
|
||||
|
||||
bench.bench_function("copy_from", move |bh| bh.iter(|| {
|
||||
bench.bench_function("copy_from", move |bh| {
|
||||
bh.iter(|| {
|
||||
b.copy_from(&a);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn axpy(bench: &mut criterion::Criterion) {
|
||||
|
@ -148,9 +152,11 @@ fn axpy(bench: &mut criterion::Criterion) {
|
|||
let mut y = DVector::<f64>::from_element(100000, 3.0);
|
||||
let a = 42.0;
|
||||
|
||||
bench.bench_function("axpy", move |bh| bh.iter(|| {
|
||||
bench.bench_function("axpy", move |bh| {
|
||||
bh.iter(|| {
|
||||
y.axpy(a, &x, 1.0);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_mul_to(bench: &mut criterion::Criterion) {
|
||||
|
@ -166,60 +172,57 @@ fn mat_mul_mat(bench: &mut criterion::Criterion) {
|
|||
let b = DMatrix::<f64>::new_random(100, 100);
|
||||
let mut ab = DMatrix::<f64>::from_element(100, 100, 0.0);
|
||||
|
||||
bench.bench_function("mat_mul_mat", move |bh| bh.iter(|| {
|
||||
bench.bench_function("mat_mul_mat", move |bh| {
|
||||
bh.iter(|| {
|
||||
test::black_box(a.mul_to(&b, &mut ab));
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn mat100_from_fn(bench: &mut criterion::Criterion) {
|
||||
bench.bench_function("mat100_from_fn", move |bh| bh.iter(|| DMatrix::from_fn(100, 100, |a, b| a + b)));
|
||||
bench.bench_function("mat100_from_fn", move |bh| {
|
||||
bh.iter(|| DMatrix::from_fn(100, 100, |a, b| a + b))
|
||||
});
|
||||
}
|
||||
|
||||
fn mat500_from_fn(bench: &mut criterion::Criterion) {
|
||||
bench.bench_function("mat500_from_fn", move |bh| bh.iter(|| DMatrix::from_fn(500, 500, |a, b| a + b)));
|
||||
bench.bench_function("mat500_from_fn", move |bh| {
|
||||
bh.iter(|| DMatrix::from_fn(500, 500, |a, b| a + b))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(matrix,
|
||||
criterion_group!(
|
||||
matrix,
|
||||
mat2_mul_m,
|
||||
mat3_mul_m,
|
||||
mat4_mul_m,
|
||||
|
||||
mat2_tr_mul_m,
|
||||
mat3_tr_mul_m,
|
||||
mat4_tr_mul_m,
|
||||
|
||||
mat2_add_m,
|
||||
mat3_add_m,
|
||||
mat4_add_m,
|
||||
|
||||
mat2_sub_m,
|
||||
mat3_sub_m,
|
||||
mat4_sub_m,
|
||||
|
||||
mat2_mul_v,
|
||||
mat3_mul_v,
|
||||
mat4_mul_v,
|
||||
|
||||
mat2_tr_mul_v,
|
||||
mat3_tr_mul_v,
|
||||
mat4_tr_mul_v,
|
||||
|
||||
mat2_mul_s,
|
||||
mat3_mul_s,
|
||||
mat4_mul_s,
|
||||
|
||||
mat2_div_s,
|
||||
mat3_div_s,
|
||||
mat4_div_s,
|
||||
|
||||
mat2_inv,
|
||||
mat3_inv,
|
||||
mat4_inv,
|
||||
|
||||
mat2_transpose,
|
||||
mat3_transpose,
|
||||
mat4_transpose,
|
||||
|
||||
mat_div_scalar,
|
||||
mat100_add_mat100,
|
||||
mat4_mul_mat4,
|
||||
|
|
|
@ -55,7 +55,9 @@ fn vec10000_axpy_f64(bh: &mut criterion::Criterion) {
|
|||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f64", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f64", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_beta_f64(bh: &mut criterion::Criterion) {
|
||||
|
@ -66,7 +68,9 @@ fn vec10000_axpy_beta_f64(bh: &mut criterion::Criterion) {
|
|||
let n = rng.gen::<f64>();
|
||||
let beta = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_beta_f64", move |bh| bh.iter(|| a.axpy(n, &b, beta)));
|
||||
bh.bench_function("vec10000_axpy_beta_f64", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, beta))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f64_slice(bh: &mut criterion::Criterion) {
|
||||
|
@ -76,12 +80,14 @@ fn vec10000_axpy_f64_slice(bh: &mut criterion::Criterion) {
|
|||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f64>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f64_slice", move |bh| bh.iter(|| {
|
||||
bh.bench_function("vec10000_axpy_f64_slice", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut a = a.fixed_rows_mut::<U10000>(0);
|
||||
let b = b.fixed_rows::<U10000>(0);
|
||||
|
||||
a.axpy(n, &b, 1.0)
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f64_static(bh: &mut criterion::Criterion) {
|
||||
|
@ -92,7 +98,9 @@ fn vec10000_axpy_f64_static(bh: &mut criterion::Criterion) {
|
|||
let n = rng.gen::<f64>();
|
||||
|
||||
// NOTE: for some reasons, it is much faster if the arument are boxed (Box::new(VectorN...)).
|
||||
bh.bench_function("vec10000_axpy_f64_static", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f64_static", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_f32(bh: &mut criterion::Criterion) {
|
||||
|
@ -102,7 +110,9 @@ fn vec10000_axpy_f32(bh: &mut criterion::Criterion) {
|
|||
let b = DVector::new_random(10000);
|
||||
let n = rng.gen::<f32>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_f32", move |bh| bh.iter(|| a.axpy(n, &b, 1.0)));
|
||||
bh.bench_function("vec10000_axpy_f32", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, 1.0))
|
||||
});
|
||||
}
|
||||
|
||||
fn vec10000_axpy_beta_f32(bh: &mut criterion::Criterion) {
|
||||
|
@ -113,51 +123,43 @@ fn vec10000_axpy_beta_f32(bh: &mut criterion::Criterion) {
|
|||
let n = rng.gen::<f32>();
|
||||
let beta = rng.gen::<f32>();
|
||||
|
||||
bh.bench_function("vec10000_axpy_beta_f32", move |bh| bh.iter(|| a.axpy(n, &b, beta)));
|
||||
bh.bench_function("vec10000_axpy_beta_f32", move |bh| {
|
||||
bh.iter(|| a.axpy(n, &b, beta))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(vector,
|
||||
criterion_group!(
|
||||
vector,
|
||||
vec2_add_v_f32,
|
||||
vec3_add_v_f32,
|
||||
vec4_add_v_f32,
|
||||
|
||||
vec2_add_v_f64,
|
||||
vec3_add_v_f64,
|
||||
vec4_add_v_f64,
|
||||
|
||||
vec2_sub_v,
|
||||
vec3_sub_v,
|
||||
vec4_sub_v,
|
||||
|
||||
vec2_mul_s,
|
||||
vec3_mul_s,
|
||||
vec4_mul_s,
|
||||
|
||||
vec2_div_s,
|
||||
vec3_div_s,
|
||||
vec4_div_s,
|
||||
|
||||
vec2_dot_f32,
|
||||
vec3_dot_f32,
|
||||
vec4_dot_f32,
|
||||
|
||||
vec2_dot_f64,
|
||||
vec3_dot_f64,
|
||||
vec4_dot_f64,
|
||||
|
||||
vec3_cross,
|
||||
|
||||
vec2_norm,
|
||||
vec3_norm,
|
||||
vec4_norm,
|
||||
|
||||
vec2_normalize,
|
||||
vec3_normalize,
|
||||
vec4_normalize,
|
||||
|
||||
vec10000_dot_f64,
|
||||
vec10000_dot_f32,
|
||||
|
||||
vec10000_axpy_f64,
|
||||
vec10000_axpy_beta_f64,
|
||||
vec10000_axpy_f64_slice,
|
||||
|
|
|
@ -26,7 +26,8 @@ bench_unop!(unit_quaternion_inv, UnitQuaternion<f32>, inverse);
|
|||
// bench_unop_self!(quaternion_conjugate, Quaternion<f32>, conjugate);
|
||||
// bench_unop!(quaternion_normalize, Quaternion<f32>, normalize);
|
||||
|
||||
criterion_group!(quaternion,
|
||||
criterion_group!(
|
||||
quaternion,
|
||||
quaternion_add_q,
|
||||
quaternion_sub_q,
|
||||
quaternion_mul_q,
|
||||
|
|
|
@ -6,63 +6,82 @@ mod macros;
|
|||
// Without unpack.
|
||||
fn bidiagonalize_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("bidiagonalize_100x100", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("bidiagonalize_100x500", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_100x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("bidiagonalize_4x4", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("bidiagonalize_500x100", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_500x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("bidiagonalize_500x500", move |bh| bh.iter(|| test::black_box(Bidiagonal::new(m.clone()))));
|
||||
bh.bench_function("bidiagonalize_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Bidiagonal::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn bidiagonalize_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("bidiagonalize_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("bidiagonalize_unpack_100x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_100x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("bidiagonalize_unpack_500x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_500x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn bidiagonalize_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("bidiagonalize_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("bidiagonalize_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let bidiag = Bidiagonal::new(m.clone());
|
||||
let _ = bidiag.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(bidiagonal,
|
||||
criterion_group!(
|
||||
bidiagonal,
|
||||
bidiagonalize_100x100,
|
||||
bidiagonalize_100x500,
|
||||
bidiagonalize_4x4,
|
||||
|
|
|
@ -4,14 +4,18 @@ fn cholesky_100x100(bh: &mut criterion::Criterion) {
|
|||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_100x100", move |bh| bh.iter(|| test::black_box(Cholesky::new(m.clone()))));
|
||||
bh.bench_function("cholesky_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Cholesky::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_500x500", move |bh| bh.iter(|| test::black_box(Cholesky::new(m.clone()))));
|
||||
bh.bench_function("cholesky_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Cholesky::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
|
@ -19,19 +23,23 @@ fn cholesky_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
|||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
let _ = chol.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
fn cholesky_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let m = &m * m.transpose();
|
||||
|
||||
bh.bench_function("cholesky_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
let _ = chol.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
|
@ -40,9 +48,11 @@ fn cholesky_solve_10x10(bh: &mut criterion::Criterion) {
|
|||
let v = DVector::<f64>::new_random(10);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
|
@ -51,9 +61,11 @@ fn cholesky_solve_100x100(bh: &mut criterion::Criterion) {
|
|||
let v = DVector::<f64>::new_random(100);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
|
@ -62,20 +74,23 @@ fn cholesky_solve_500x500(bh: &mut criterion::Criterion) {
|
|||
let v = DVector::<f64>::new_random(500);
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.solve(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
fn cholesky_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
|
@ -83,9 +98,11 @@ fn cholesky_inverse_100x100(bh: &mut criterion::Criterion) {
|
|||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn cholesky_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
|
@ -93,12 +110,15 @@ fn cholesky_inverse_500x500(bh: &mut criterion::Criterion) {
|
|||
let m = &m * m.transpose();
|
||||
let chol = Cholesky::new(m.clone()).unwrap();
|
||||
|
||||
bh.bench_function("cholesky_inverse_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("cholesky_inverse_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = chol.inverse();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(cholesky,
|
||||
criterion_group!(
|
||||
cholesky,
|
||||
cholesky_100x100,
|
||||
cholesky_500x500,
|
||||
cholesky_decompose_unpack_100x100,
|
||||
|
|
|
@ -3,93 +3,117 @@ use na::{DMatrix, DVector, FullPivLU};
|
|||
// Without unpack.
|
||||
fn full_piv_lu_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
bh.bench_function("full_piv_lu_decompose_10x10", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("full_piv_lu_decompose_100x100", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("full_piv_lu_decompose_500x500", move |bh| bh.iter(|| test::black_box(FullPivLU::new(m.clone()))));
|
||||
bh.bench_function("full_piv_lu_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(FullPivLU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("full_piv_lu_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_10x10", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_100x100", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_inverse_500x500", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("full_piv_lu_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_determinant_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_10x10", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
fn full_piv_lu_determinant_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_100x100", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn full_piv_lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = FullPivLU::new(m.clone());
|
||||
|
||||
bh.bench_function("full_piv_lu_determinant_500x500", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("full_piv_lu_determinant_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(full_piv_lu,
|
||||
criterion_group!(
|
||||
full_piv_lu,
|
||||
full_piv_lu_decompose_10x10,
|
||||
full_piv_lu_decompose_100x100,
|
||||
// full_piv_lu_decompose_500x500,
|
||||
|
|
|
@ -6,50 +6,65 @@ mod macros;
|
|||
// Without unpack.
|
||||
fn hessenberg_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("hessenberg_decompose_4x4", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("hessenberg_decompose_100x100", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(200, 200);
|
||||
bh.bench_function("hessenberg_decompose_200x200", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("hessenberg_decompose_500x500", move |bh| bh.iter(|| test::black_box(Hessenberg::new(m.clone()))));
|
||||
bh.bench_function("hessenberg_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(Hessenberg::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn hessenberg_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("hessenberg_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_unpack_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(200, 200);
|
||||
bh.bench_function("hessenberg_decompose_unpack_200x200", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_200x200", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn hessenberg_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("hessenberg_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("hessenberg_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let hess = Hessenberg::new(m.clone());
|
||||
let _ = hess.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(hessenberg,
|
||||
criterion_group!(
|
||||
hessenberg,
|
||||
hessenberg_decompose_4x4,
|
||||
hessenberg_decompose_100x100,
|
||||
hessenberg_decompose_200x200,
|
||||
|
|
|
@ -3,82 +3,104 @@ use na::{DMatrix, DVector, LU};
|
|||
// Without unpack.
|
||||
fn lu_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
bh.bench_function("lu_decompose_10x10", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("lu_decompose_100x100", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("lu_decompose_500x500", move |bh| bh.iter(|| test::black_box(LU::new(m.clone()))));
|
||||
bh.bench_function("lu_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(LU::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("lu_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("lu_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("", move |bh| bh.iter(|| {
|
||||
bh.bench_function("", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
lu.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_10x10", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_100x100", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_inverse_500x500", move |bh| bh.iter(|| test::black_box(lu.try_inverse())));
|
||||
bh.bench_function("lu_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_determinant_10x10", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("lu_determinant_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let lu = LU::new(m.clone());
|
||||
|
||||
bh.bench_function("lu_determinant_100x100", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
bh.bench_function("lu_determinant_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(lu.determinant()))
|
||||
});
|
||||
}
|
||||
|
||||
fn lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
||||
|
@ -88,7 +110,8 @@ fn lu_determinant_500x500(bh: &mut criterion::Criterion) {
|
|||
bh.bench_function("", move |bh| bh.iter(|| test::black_box(lu.determinant())));
|
||||
}
|
||||
|
||||
criterion_group!(lu,
|
||||
criterion_group!(
|
||||
lu,
|
||||
lu_decompose_10x10,
|
||||
lu_decompose_100x100,
|
||||
// lu_decompose_500x500,
|
||||
|
|
|
@ -6,115 +6,145 @@ mod macros;
|
|||
// Without unpack.
|
||||
fn qr_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("qr_decompose_100x100", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("qr_decompose_100x500", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_100x500", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("qr_decompose_4x4", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("qr_decompose_500x100", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_500x100", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("qr_decompose_500x500", move |bh| bh.iter(|| test::black_box(QR::new(m.clone()))));
|
||||
bh.bench_function("qr_decompose_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(QR::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
// With unpack.
|
||||
fn qr_decompose_unpack_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
bh.bench_function("qr_decompose_unpack_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_100x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 500);
|
||||
bh.bench_function("qr_decompose_unpack_100x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_100x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_500x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 100);
|
||||
bh.bench_function("qr_decompose_unpack_500x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_500x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_decompose_unpack_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
bh.bench_function("qr_decompose_unpack_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_decompose_unpack_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let qr = QR::new(m.clone());
|
||||
let _ = qr.unpack();
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_10x10", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_10x10", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(10, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(100, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_solve_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_solve_500x500", move |bh| bh.iter(|| {
|
||||
bh.bench_function("qr_solve_500x500", move |bh| {
|
||||
bh.iter(|| {
|
||||
let mut b = DVector::<f64>::from_element(500, 1.0);
|
||||
qr.solve(&mut b);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_10x10", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_100x100", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
fn qr_inverse_500x500(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(500, 500);
|
||||
let qr = QR::new(m.clone());
|
||||
|
||||
bh.bench_function("qr_inverse_500x500", move |bh| bh.iter(|| test::black_box(qr.try_inverse())));
|
||||
bh.bench_function("qr_inverse_500x500", move |bh| {
|
||||
bh.iter(|| test::black_box(qr.try_inverse()))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(qr,
|
||||
criterion_group!(
|
||||
qr,
|
||||
qr_decompose_100x100,
|
||||
qr_decompose_100x500,
|
||||
qr_decompose_4x4,
|
||||
|
|
|
@ -2,45 +2,62 @@ use na::{Matrix4, Schur};
|
|||
|
||||
fn schur_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("schur_decompose_4x4", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("schur_decompose_10x10", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("schur_decompose_100x100", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn schur_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("schur_decompose_200x200", move |bh| bh.iter(|| test::black_box(Schur::new(m.clone()))));
|
||||
bh.bench_function("schur_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(Schur::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("eigenvalues_4x4", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("eigenvalues_10x10", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("eigenvalues_100x100", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
fn eigenvalues_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("eigenvalues_200x200", move |bh| bh.iter(|| test::black_box(m.complex_eigenvalues())));
|
||||
bh.bench_function("eigenvalues_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.complex_eigenvalues()))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(schur,
|
||||
criterion_group!(
|
||||
schur,
|
||||
schur_decompose_4x4,
|
||||
schur_decompose_10x10,
|
||||
schur_decompose_100x100,
|
||||
|
|
|
@ -4,76 +4,92 @@ fn solve_l_triangular_100x100(bh: &mut criterion::Criterion) {
|
|||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("solve_l_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_l_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_l_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("solve_l_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_l_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_l_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("tr_solve_l_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_l_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_l_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("tr_solve_l_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_l_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_lower_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_u_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("solve_u_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_u_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn solve_u_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("solve_u_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("solve_u_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_u_triangular_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(100, 100);
|
||||
let v = DVector::<f64>::new_random(100);
|
||||
|
||||
bh.bench_function("tr_solve_u_triangular_100x100", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_u_triangular_100x100", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
fn tr_solve_u_triangular_1000x1000(bh: &mut criterion::Criterion) {
|
||||
let m = DMatrix::<f64>::new_random(1000, 1000);
|
||||
let v = DVector::<f64>::new_random(1000);
|
||||
|
||||
bh.bench_function("tr_solve_u_triangular_1000x1000", move |bh| bh.iter(|| {
|
||||
bh.bench_function("tr_solve_u_triangular_1000x1000", move |bh| {
|
||||
bh.iter(|| {
|
||||
let _ = m.tr_solve_upper_triangular(&v);
|
||||
}));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(solve,
|
||||
criterion_group!(
|
||||
solve,
|
||||
solve_l_triangular_100x100,
|
||||
solve_l_triangular_1000x1000,
|
||||
tr_solve_l_triangular_100x100,
|
||||
|
|
|
@ -2,86 +2,118 @@ use na::{Matrix4, SVD};
|
|||
|
||||
fn svd_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("svd_decompose_4x4", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("svd_decompose_10x10", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("svd_decompose_100x100", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn svd_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("svd_decompose_200x200", move |bh| bh.iter(|| test::black_box(SVD::new(m.clone(), true, true))));
|
||||
bh.bench_function("svd_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(SVD::new(m.clone(), true, true)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("rank_4x4", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("rank_10x10", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("rank_100x100", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn rank_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("rank_200x200", move |bh| bh.iter(|| test::black_box(m.rank(1.0e-10))));
|
||||
bh.bench_function("rank_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.rank(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("singular_values_4x4", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("singular_values_10x10", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("singular_values_100x100", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn singular_values_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("singular_values_200x200", move |bh| bh.iter(|| test::black_box(m.singular_values())));
|
||||
bh.bench_function("singular_values_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.singular_values()))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("pseudo_inverse_4x4", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("pseudo_inverse_10x10", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("pseudo_inverse_100x100", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
fn pseudo_inverse_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("pseudo_inverse_200x200", move |bh| bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10))));
|
||||
bh.bench_function("pseudo_inverse_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(m.clone().pseudo_inverse(1.0e-10)))
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
criterion_group!(svd,
|
||||
criterion_group!(
|
||||
svd,
|
||||
svd_decompose_4x4,
|
||||
svd_decompose_10x10,
|
||||
svd_decompose_100x100,
|
||||
|
|
|
@ -2,25 +2,34 @@ use na::{Matrix4, SymmetricEigen};
|
|||
|
||||
fn symmetric_eigen_decompose_4x4(bh: &mut criterion::Criterion) {
|
||||
let m = Matrix4::<f64>::new_random();
|
||||
bh.bench_function("symmetric_eigen_decompose_4x4", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_4x4", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_10x10(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(10, 10);
|
||||
bh.bench_function("symmetric_eigen_decompose_10x10", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_10x10", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_100x100(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(100, 100);
|
||||
bh.bench_function("symmetric_eigen_decompose_100x100", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_100x100", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
fn symmetric_eigen_decompose_200x200(bh: &mut criterion::Criterion) {
|
||||
let m = crate::reproductible_dmatrix(200, 200);
|
||||
bh.bench_function("symmetric_eigen_decompose_200x200", move |bh| bh.iter(|| test::black_box(SymmetricEigen::new(m.clone()))));
|
||||
bh.bench_function("symmetric_eigen_decompose_200x200", move |bh| {
|
||||
bh.iter(|| test::black_box(SymmetricEigen::new(m.clone())))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(symmetric_eigen,
|
||||
criterion_group!(
|
||||
symmetric_eigen,
|
||||
symmetric_eigen_decompose_4x4,
|
||||
symmetric_eigen_decompose_10x10,
|
||||
symmetric_eigen_decompose_100x100,
|
||||
|
|
|
@ -20,7 +20,9 @@ where
|
|||
|
||||
/// Reflects a 2D vector wrt. the 2D line with normal `plane_normal`.
|
||||
fn reflect_wrt_hyperplane2<N>(plane_normal: &Unit<Vector2<N>>, vector: &Vector2<N>) -> Vector2<N>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let n = plane_normal.as_ref(); // Get the underlying Vector2
|
||||
vector - n * (n.dot(vector) * na::convert(2.0))
|
||||
}
|
||||
|
@ -28,7 +30,9 @@ where N: RealField {
|
|||
/// Reflects a 3D vector wrt. the 3D plane with normal `plane_normal`.
|
||||
/// /!\ This is an exact replicate of `reflect_wrt_hyperplane2, but for 3D.
|
||||
fn reflect_wrt_hyperplane3<N>(plane_normal: &Unit<Vector3<N>>, vector: &Vector3<N>) -> Vector3<N>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let n = plane_normal.as_ref(); // Get the underlying Vector3
|
||||
vector - n * (n.dot(vector) * na::convert(2.0))
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use core::mem;
|
||||
use na::{self, DefaultAllocator, RealField};
|
||||
use num::FromPrimitive;
|
||||
use core::mem;
|
||||
|
||||
use crate::aliases::{TMat, TVec};
|
||||
use crate::traits::{Alloc, Dimension, Number};
|
||||
|
@ -22,7 +22,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
|||
///
|
||||
/// * [`sign`](fn.sign.html)
|
||||
pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, R, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.abs()
|
||||
}
|
||||
|
||||
|
@ -44,7 +46,9 @@ where DefaultAllocator: Alloc<N, R, C> {
|
|||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn ceil<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.ceil())
|
||||
}
|
||||
|
||||
|
@ -94,7 +98,9 @@ pub fn clamp_scalar<N: Number>(x: N, min_val: N, max_val: N) -> N {
|
|||
/// * [`clamp_scalar`](fn.clamp_scalar.html)
|
||||
/// * [`clamp_vec`](fn.clamp_vec.html)
|
||||
pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| na::clamp(x, min_val, max_val))
|
||||
}
|
||||
|
||||
|
@ -167,7 +173,9 @@ pub fn float_bits_to_int(v: f32) -> i32 {
|
|||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn float_bits_to_int_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<i32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(float_bits_to_int)
|
||||
}
|
||||
|
||||
|
@ -202,7 +210,9 @@ pub fn float_bits_to_uint(v: f32) -> u32 {
|
|||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(float_bits_to_uint)
|
||||
}
|
||||
|
||||
|
@ -223,7 +233,9 @@ where DefaultAllocator: Alloc<f32, D> {
|
|||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn floor<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.floor())
|
||||
}
|
||||
|
||||
|
@ -250,7 +262,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn fract<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.fract())
|
||||
}
|
||||
|
||||
|
@ -293,7 +307,9 @@ pub fn int_bits_to_float(v: i32) -> f32 {
|
|||
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn int_bits_to_float_vec<D: Dimension>(v: &TVec<i32, D>) -> TVec<f32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(int_bits_to_float)
|
||||
}
|
||||
|
||||
|
@ -352,7 +368,9 @@ pub fn mix_scalar<N: Number>(x: N, y: N, a: N) -> N {
|
|||
/// * [`mix_scalar`](fn.mix_scalar.html)
|
||||
/// * [`mix_vec`](fn.mix_vec.html)
|
||||
pub fn mix<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, a: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x * (N::one() - a) + y * a
|
||||
}
|
||||
|
||||
|
@ -425,7 +443,9 @@ pub fn lerp_scalar<N: Number>(x: N, y: N, a: N) -> N {
|
|||
/// * [`lerp_scalar`](fn.lerp_scalar.html)
|
||||
/// * [`lerp_vec`](fn.lerp_vec.html)
|
||||
pub fn lerp<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, a: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
mix(x, y, a)
|
||||
}
|
||||
|
||||
|
@ -468,7 +488,9 @@ where
|
|||
///
|
||||
/// * [`modf`](fn.modf.html)
|
||||
pub fn modf_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x % y)
|
||||
}
|
||||
|
||||
|
@ -500,7 +522,9 @@ pub fn modf<N: Number>(x: N, i: N) -> N {
|
|||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn round<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.round())
|
||||
}
|
||||
|
||||
|
@ -524,7 +548,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`abs`](fn.abs.html)
|
||||
///
|
||||
pub fn sign<N: Number, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| if x.is_zero() { N::zero() } else { x.signum() })
|
||||
}
|
||||
|
||||
|
@ -550,13 +576,17 @@ pub fn step_scalar<N: Number>(edge: N, x: N) -> N {
|
|||
|
||||
/// Returns 0.0 if `x[i] < edge`, otherwise it returns 1.0.
|
||||
pub fn step<N: Number, D: Dimension>(edge: N, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| step_scalar(edge, x))
|
||||
}
|
||||
|
||||
/// Returns 0.0 if `x[i] < edge[i]`, otherwise it returns 1.0.
|
||||
pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
edge.zip_map(x, step_scalar)
|
||||
}
|
||||
|
||||
|
@ -577,7 +607,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
pub fn trunc<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|x| x.trunc())
|
||||
}
|
||||
|
||||
|
@ -612,6 +644,8 @@ pub fn uint_bits_to_float_scalar(v: u32) -> f32 {
|
|||
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
||||
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
||||
pub fn uint_bits_to_float<D: Dimension>(v: &TVec<u32, D>) -> TVec<f32, D>
|
||||
where DefaultAllocator: Alloc<f32, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<f32, D>,
|
||||
{
|
||||
v.map(uint_bits_to_float_scalar)
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use crate::aliases::TVec;
|
||||
use na::{DefaultAllocator, RealField};
|
||||
use crate::traits::{Alloc, Dimension};
|
||||
use na::{DefaultAllocator, RealField};
|
||||
|
||||
/// Component-wise exponential.
|
||||
///
|
||||
|
@ -8,7 +8,9 @@ use crate::traits::{Alloc, Dimension};
|
|||
///
|
||||
/// * [`exp2`](fn.exp2.html)
|
||||
pub fn exp<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp())
|
||||
}
|
||||
|
||||
|
@ -18,7 +20,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
///
|
||||
/// * [`exp`](fn.exp.html)
|
||||
pub fn exp2<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.exp2())
|
||||
}
|
||||
|
||||
|
@ -28,7 +32,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
///
|
||||
/// * [`sqrt`](fn.sqrt.html)
|
||||
pub fn inversesqrt<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| N::one() / x.sqrt())
|
||||
}
|
||||
|
||||
|
@ -38,7 +44,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
///
|
||||
/// * [`log2`](fn.log2.html)
|
||||
pub fn log<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.ln())
|
||||
}
|
||||
|
||||
|
@ -48,13 +56,17 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
///
|
||||
/// * [`log`](fn.log.html)
|
||||
pub fn log2<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.log2())
|
||||
}
|
||||
|
||||
/// Component-wise power.
|
||||
pub fn pow<N: RealField, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
base.zip_map(exponent, |b, e| b.powf(e))
|
||||
}
|
||||
|
||||
|
@ -67,6 +79,8 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`inversesqrt`](fn.inversesqrt.html)
|
||||
/// * [`pow`](fn.pow.html)
|
||||
pub fn sqrt<N: RealField, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| x.sqrt())
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use crate::aliases::TMat4;
|
||||
use na::{RealField};
|
||||
use na::RealField;
|
||||
|
||||
//pub fn frustum<N: RealField>(left: N, right: N, bottom: N, top: N, near: N, far: N) -> TMat4<N> {
|
||||
// unimplemented!()
|
||||
|
@ -90,7 +90,14 @@ pub fn ortho_lh<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zf
|
|||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
pub fn ortho_lh_no<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
|
@ -115,7 +122,14 @@ pub fn ortho_lh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N,
|
|||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_zo<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
pub fn ortho_lh_zo<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let one: N = N::one();
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
@ -171,7 +185,14 @@ pub fn ortho_rh<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zf
|
|||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
pub fn ortho_rh_no<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
||||
|
@ -196,7 +217,14 @@ pub fn ortho_rh_no<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N,
|
|||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_zo<N: RealField>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> TMat4<N> {
|
||||
pub fn ortho_rh_zo<N: RealField>(
|
||||
left: N,
|
||||
right: N,
|
||||
bottom: N,
|
||||
top: N,
|
||||
znear: N,
|
||||
zfar: N,
|
||||
) -> TMat4<N> {
|
||||
let one: N = N::one();
|
||||
let two: N = crate::convert(2.0);
|
||||
let mut mat: TMat4<N> = TMat4::<N>::identity();
|
||||
|
@ -264,19 +292,16 @@ pub fn perspective_fov_lh<N: RealField>(fov: N, width: N, height: N, near: N, fa
|
|||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_no<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_lh_no<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
|
@ -303,19 +328,16 @@ pub fn perspective_fov_lh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
|||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_zo<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_lh_zo<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
|
@ -370,19 +392,16 @@ pub fn perspective_fov_rh<N: RealField>(fov: N, width: N, height: N, near: N, fa
|
|||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_no<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_rh_no<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
|
@ -409,19 +428,16 @@ pub fn perspective_fov_rh_no<N: RealField>(fov: N, width: N, height: N, near: N,
|
|||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_zo<N: RealField>(fov: N, width: N, height: N, near: N, far: N) -> TMat4<N> {
|
||||
assert!(
|
||||
width > N::zero(),
|
||||
"The width must be greater than zero"
|
||||
);
|
||||
assert!(
|
||||
height > N::zero(),
|
||||
"The height must be greater than zero."
|
||||
);
|
||||
assert!(
|
||||
fov > N::zero(),
|
||||
"The fov must be greater than zero"
|
||||
);
|
||||
pub fn perspective_fov_rh_zo<N: RealField>(
|
||||
fov: N,
|
||||
width: N,
|
||||
height: N,
|
||||
near: N,
|
||||
far: N,
|
||||
) -> TMat4<N> {
|
||||
assert!(width > N::zero(), "The width must be greater than zero");
|
||||
assert!(height > N::zero(), "The height must be greater than zero.");
|
||||
assert!(fov > N::zero(), "The fov must be greater than zero");
|
||||
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
|
|
|
@ -9,7 +9,11 @@ use crate::aliases::{TMat4, TVec2, TVec3, TVec4};
|
|||
/// * `center` - Specify the center of a picking region in window coordinates.
|
||||
/// * `delta` - Specify the width and height, respectively, of the picking region in window coordinates.
|
||||
/// * `viewport` - Rendering viewport.
|
||||
pub fn pick_matrix<N: RealField>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec4<N>) -> TMat4<N> {
|
||||
pub fn pick_matrix<N: RealField>(
|
||||
center: &TVec2<N>,
|
||||
delta: &TVec2<N>,
|
||||
viewport: &TVec4<N>,
|
||||
) -> TMat4<N> {
|
||||
let shift = TVec3::new(
|
||||
(viewport.z - (center.x - viewport.x) * na::convert(2.0)) / delta.x,
|
||||
(viewport.w - (center.y - viewport.y) * na::convert(2.0)) / delta.y,
|
||||
|
@ -46,8 +50,7 @@ pub fn project<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
project_no(obj, model, proj, viewport)
|
||||
}
|
||||
|
||||
|
@ -74,8 +77,7 @@ pub fn project_no<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let proj = project_zo(obj, model, proj, viewport);
|
||||
TVec3::new(proj.x, proj.y, proj.z * na::convert(0.5) + na::convert(0.5))
|
||||
}
|
||||
|
@ -103,8 +105,7 @@ pub fn project_zo<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let normalized = proj * model * TVec4::new(obj.x, obj.y, obj.z, N::one());
|
||||
let scale = N::one() / normalized.w;
|
||||
|
||||
|
@ -137,8 +138,7 @@ pub fn unproject<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
unproject_no(win, model, proj, viewport)
|
||||
}
|
||||
|
||||
|
@ -165,8 +165,7 @@ pub fn unproject_no<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
|
@ -203,8 +202,7 @@ pub fn unproject_zo<N: RealField>(
|
|||
model: &TMat4<N>,
|
||||
proj: &TMat4<N>,
|
||||
viewport: TVec4<N>,
|
||||
) -> TVec3<N>
|
||||
{
|
||||
) -> TVec3<N> {
|
||||
let _2: N = na::convert(2.0);
|
||||
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
|
||||
let pt = TVec4::new(
|
||||
|
|
|
@ -5,7 +5,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
|||
|
||||
/// The identity matrix.
|
||||
pub fn identity<N: Number, D: Dimension>() -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
TMat::<N, D, D>::identity()
|
||||
}
|
||||
|
||||
|
|
|
@ -14,13 +14,17 @@ pub fn cross<N: Number>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
|
|||
///
|
||||
/// * [`distance2`](fn.distance2.html)
|
||||
pub fn distance<N: RealField, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm()
|
||||
}
|
||||
|
||||
/// The dot product of two vectors.
|
||||
pub fn dot<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.dot(y)
|
||||
}
|
||||
|
||||
|
@ -50,7 +54,9 @@ where
|
|||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
|
@ -64,26 +70,34 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
|
||||
pub fn magnitude<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
/// Normalizes a vector.
|
||||
pub fn normalize<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.normalize()
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface orientation `n`, returns the reflection direction : `result = i - 2.0 * dot(n, i) * n`.
|
||||
pub fn reflect_vec<N: Number, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let _2 = N::one() + N::one();
|
||||
i - n * (n.dot(i) * _2)
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector.
|
||||
pub fn refract_vec<N: RealField, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>, eta: N) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
let ni = n.dot(i);
|
||||
let k = N::one() - eta * eta * (N::one() - ni * ni);
|
||||
|
||||
|
|
|
@ -10,10 +10,7 @@ use crate::traits::{Alloc, Dimension};
|
|||
/// * [`row`](fn.row.html)
|
||||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn column<N: Scalar, R: Dimension, C: Dimension>(
|
||||
m: &TMat<N, R, C>,
|
||||
index: usize,
|
||||
) -> TVec<N, R>
|
||||
pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, R>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
|
@ -48,7 +45,9 @@ where
|
|||
/// * [`set_column`](fn.set_column.html)
|
||||
/// * [`set_row`](fn.set_row.html)
|
||||
pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
m.row(index).into_owned().transpose()
|
||||
}
|
||||
|
||||
|
|
|
@ -5,14 +5,18 @@ use crate::traits::{Alloc, Dimension};
|
|||
|
||||
/// Fast matrix inverse for affine matrix.
|
||||
pub fn affine_inverse<N: RealField, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
// FIXME: this should be optimized.
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
}
|
||||
|
||||
/// Compute the transpose of the inverse of a matrix.
|
||||
pub fn inverse_transpose<N: RealField, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.try_inverse()
|
||||
.unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
.transpose()
|
||||
|
|
|
@ -76,7 +76,12 @@ pub fn mat2_to_mat3<N: Number>(m: &TMat2<N>) -> TMat3<N> {
|
|||
|
||||
/// Converts a 3x3 matrix to a 2x2 matrix.
|
||||
pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> {
|
||||
TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts a 3x3 matrix to a 4x4 matrix.
|
||||
|
@ -92,9 +97,15 @@ pub fn mat3_to_mat4<N: Number>(m: &TMat3<N>) -> TMat4<N> {
|
|||
/// Converts a 4x4 matrix to a 3x3 matrix.
|
||||
pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> {
|
||||
TMat3::new(
|
||||
m.m11.inlined_clone(), m.m12.inlined_clone(), m.m13.inlined_clone(),
|
||||
m.m21.inlined_clone(), m.m22.inlined_clone(), m.m23.inlined_clone(),
|
||||
m.m31.inlined_clone(), m.m32.inlined_clone(), m.m33.inlined_clone(),
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m13.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
m.m23.inlined_clone(),
|
||||
m.m31.inlined_clone(),
|
||||
m.m32.inlined_clone(),
|
||||
m.m33.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
|
@ -110,7 +121,12 @@ pub fn mat2_to_mat4<N: Number>(m: &TMat2<N>) -> TMat4<N> {
|
|||
|
||||
/// Converts a 4x4 matrix to a 2x2 matrix.
|
||||
pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> {
|
||||
TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
|
||||
TMat2::new(
|
||||
m.m11.inlined_clone(),
|
||||
m.m12.inlined_clone(),
|
||||
m.m21.inlined_clone(),
|
||||
m.m22.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
|
||||
|
@ -297,7 +313,11 @@ pub fn vec3_to_vec3<N: Scalar>(v: &TVec3<N>) -> TVec3<N> {
|
|||
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
|
||||
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
|
||||
pub fn vec4_to_vec3<N: Scalar>(v: &TVec4<N>) -> TVec3<N> {
|
||||
TVec3::new(v.x.inlined_clone(), v.y.inlined_clone(), v.z.inlined_clone())
|
||||
TVec3::new(
|
||||
v.x.inlined_clone(),
|
||||
v.y.inlined_clone(),
|
||||
v.z.inlined_clone(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a 3D vector from another vector.
|
||||
|
@ -386,12 +406,16 @@ pub fn make_vec4<N: Scalar>(ptr: &[N]) -> TVec4<N> {
|
|||
|
||||
/// Converts a matrix or vector to a slice arranged in column-major order.
|
||||
pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_slice()
|
||||
}
|
||||
|
||||
/// Converts a matrix or vector to a mutable slice arranged in column-major order.
|
||||
pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N]
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.as_mut_slice()
|
||||
}
|
||||
|
|
|
@ -9,7 +9,9 @@ use crate::traits::{Alloc, Dimension};
|
|||
///
|
||||
/// * [`distance`](fn.distance.html)
|
||||
pub fn distance2<N: RealField, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
(p1 - p0).norm_squared()
|
||||
}
|
||||
|
||||
|
@ -21,7 +23,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_distance<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l1_norm(&(y - x))
|
||||
}
|
||||
|
||||
|
@ -36,7 +40,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_norm<N: RealField, D: Dimension>(v: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
crate::comp_add(&v.abs())
|
||||
}
|
||||
|
||||
|
@ -55,7 +61,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_distance<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
l2_norm(&(y - x))
|
||||
}
|
||||
|
||||
|
@ -76,7 +84,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_norm<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm()
|
||||
}
|
||||
|
||||
|
@ -92,7 +102,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length2<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
|
@ -108,7 +120,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
|
||||
pub fn magnitude2<N: RealField, D: Dimension>(x: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
|
|
|
@ -11,7 +11,9 @@ use crate::traits::{Alloc, Dimension};
|
|||
///
|
||||
/// * [`normalize_dot`](fn.normalize_dot.html`)
|
||||
pub fn fast_normalize_dot<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
|
@ -22,7 +24,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
///
|
||||
/// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`)
|
||||
pub fn normalize_dot<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
|
|
|
@ -5,7 +5,9 @@ use crate::traits::{Alloc, Dimension};
|
|||
|
||||
/// The angle between two vectors.
|
||||
pub fn angle<N: RealField, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.angle(y)
|
||||
}
|
||||
|
||||
|
|
|
@ -22,11 +22,7 @@ pub fn are_collinear2d<N: Number>(v0: &TVec2<N>, v1: &TVec2<N>, epsilon: N) -> b
|
|||
}
|
||||
|
||||
/// Returns `true` if two vectors are orthogonal (up to an epsilon).
|
||||
pub fn are_orthogonal<N: Number, D: Dimension>(
|
||||
v0: &TVec<N, D>,
|
||||
v1: &TVec<N, D>,
|
||||
epsilon: N,
|
||||
) -> bool
|
||||
pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>, epsilon: N) -> bool
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
|
@ -40,18 +36,24 @@ where
|
|||
|
||||
/// Returns `true` if all the components of `v` are zero (up to an epsilon).
|
||||
pub fn is_comp_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
v.map(|x| abs_diff_eq!(x, N::zero(), epsilon = epsilon))
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` has a magnitude of 1 (up to an epsilon).
|
||||
pub fn is_normalized<N: RealField, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(v.norm_squared(), N::one(), epsilon = epsilon * epsilon)
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` is zero (up to an epsilon).
|
||||
pub fn is_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
abs_diff_eq!(*v, TVec::<N, D>::zeros(), epsilon = epsilon)
|
||||
}
|
||||
|
|
|
@ -5,13 +5,17 @@ use crate::traits::{Alloc, Dimension, Number};
|
|||
|
||||
/// The determinant of the matrix `m`.
|
||||
pub fn determinant<N: RealField, D: Dimension>(m: &TMat<N, D, D>) -> N
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.determinant()
|
||||
}
|
||||
|
||||
/// The inverse of the matrix `m`.
|
||||
pub fn inverse<N: RealField, D: Dimension>(m: &TMat<N, D, D>) -> TMat<N, D, D>
|
||||
where DefaultAllocator: Alloc<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D, D>,
|
||||
{
|
||||
m.clone()
|
||||
.try_inverse()
|
||||
.unwrap_or_else(TMat::<N, D, D>::zeros)
|
||||
|
@ -41,6 +45,8 @@ where
|
|||
|
||||
/// The transpose of the matrix `m`.
|
||||
pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R>
|
||||
where DefaultAllocator: Alloc<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, R, C>,
|
||||
{
|
||||
x.transpose()
|
||||
}
|
||||
|
|
|
@ -71,7 +71,8 @@ pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
|
|||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: Allocator<N, R>
|
||||
impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where
|
||||
T: Allocator<N, R>
|
||||
+ Allocator<N, C>
|
||||
+ Allocator<N, U1, R>
|
||||
+ Allocator<N, U1, C>
|
||||
|
|
|
@ -5,90 +5,120 @@ use crate::traits::{Alloc, Dimension};
|
|||
|
||||
/// Component-wise arc-cosinus.
|
||||
pub fn acos<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-cosinus.
|
||||
pub fn acosh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.acosh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-sinus.
|
||||
pub fn asin<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-sinus.
|
||||
pub fn asinh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.asinh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent of `y / x`.
|
||||
pub fn atan2<N: RealField, D: Dimension>(y: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y.zip_map(x, |y, x| y.atan2(x))
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent.
|
||||
pub fn atan<N: RealField, D: Dimension>(y_over_x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
y_over_x.map(|e| e.atan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-tangent.
|
||||
pub fn atanh<N: RealField, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.map(|e| e.atanh())
|
||||
}
|
||||
|
||||
/// Component-wise cosinus.
|
||||
pub fn cos<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic cosinus.
|
||||
pub fn cosh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.cosh())
|
||||
}
|
||||
|
||||
/// Component-wise conversion from radians to degrees.
|
||||
pub fn degrees<N: RealField, D: Dimension>(radians: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
radians.map(|e| e * na::convert(180.0) / N::pi())
|
||||
}
|
||||
|
||||
/// Component-wise conversion fro degrees to radians.
|
||||
pub fn radians<N: RealField, D: Dimension>(degrees: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
degrees.map(|e| e * N::pi() / na::convert(180.0))
|
||||
}
|
||||
|
||||
/// Component-wise sinus.
|
||||
pub fn sin<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic sinus.
|
||||
pub fn sinh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.sinh())
|
||||
}
|
||||
|
||||
/// Component-wise tangent.
|
||||
pub fn tan<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic tangent.
|
||||
pub fn tanh<N: RealField, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
angle.map(|e| e.tanh())
|
||||
}
|
||||
|
|
|
@ -21,7 +21,9 @@ use crate::traits::{Alloc, Dimension, Number};
|
|||
/// * [`any`](fn.any.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().all(|x| *x)
|
||||
}
|
||||
|
||||
|
@ -46,7 +48,9 @@ where DefaultAllocator: Alloc<bool, D> {
|
|||
/// * [`all`](fn.all.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.iter().any(|x| *x)
|
||||
}
|
||||
|
||||
|
@ -70,7 +74,9 @@ where DefaultAllocator: Alloc<bool, D> {
|
|||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x == y)
|
||||
}
|
||||
|
||||
|
@ -94,7 +100,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x > y)
|
||||
}
|
||||
|
||||
|
@ -117,10 +125,7 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn greater_than_equal<N: Number, D: Dimension>(
|
||||
x: &TVec<N, D>,
|
||||
y: &TVec<N, D>,
|
||||
) -> TVec<bool, D>
|
||||
pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
|
@ -147,7 +152,9 @@ where
|
|||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x < y)
|
||||
}
|
||||
|
||||
|
@ -171,7 +178,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`not`](fn.not.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x <= y)
|
||||
}
|
||||
|
||||
|
@ -196,7 +205,9 @@ where DefaultAllocator: Alloc<N, D> {
|
|||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not_equal`](fn.not_equal.html)
|
||||
pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<bool, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<bool, D>,
|
||||
{
|
||||
v.map(|x| !x)
|
||||
}
|
||||
|
||||
|
@ -220,6 +231,8 @@ where DefaultAllocator: Alloc<bool, D> {
|
|||
/// * [`less_than_equal`](fn.less_than_equal.html)
|
||||
/// * [`not`](fn.not.html)
|
||||
pub fn not_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
|
||||
where DefaultAllocator: Alloc<N, D> {
|
||||
where
|
||||
DefaultAllocator: Alloc<N, D>,
|
||||
{
|
||||
x.zip_map(y, |x, y| x != y)
|
||||
}
|
||||
|
|
|
@ -1,35 +1,35 @@
|
|||
extern crate nalgebra as na;
|
||||
extern crate nalgebra_glm as glm;
|
||||
|
||||
use na::Perspective3;
|
||||
use na::Orthographic3;
|
||||
use glm::Mat4;
|
||||
use glm::Vec4;
|
||||
use na::Orthographic3;
|
||||
use na::Perspective3;
|
||||
|
||||
#[test]
|
||||
pub fn orthographic_glm_nalgebra_same()
|
||||
{
|
||||
let na_mat : Mat4 = Orthographic3::new(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
pub fn orthographic_glm_nalgebra_same() {
|
||||
let na_mat: Mat4 =
|
||||
Orthographic3::new(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::ortho(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
assert_eq!(na_mat, gl_mat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn perspective_glm_nalgebra_same()
|
||||
{
|
||||
let na_mat : Mat4 = Perspective3::new(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
pub fn perspective_glm_nalgebra_same() {
|
||||
let na_mat: Mat4 =
|
||||
Perspective3::new(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::perspective(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
assert_eq!(na_mat, gl_mat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn orthographic_glm_nalgebra_project_same()
|
||||
{
|
||||
pub fn orthographic_glm_nalgebra_project_same() {
|
||||
let point = Vec4::new(1.0, 0.0, -20.0, 1.0);
|
||||
|
||||
let na_mat : Mat4 = Orthographic3::new(-100.0f32,100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let na_mat: Mat4 =
|
||||
Orthographic3::new(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::ortho(-100.0f32, 100.0f32, -50.0f32, 50.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
let na_pt = na_mat * point;
|
||||
|
@ -40,11 +40,11 @@ pub fn orthographic_glm_nalgebra_project_same()
|
|||
}
|
||||
|
||||
#[test]
|
||||
pub fn perspective_glm_nalgebra_project_same()
|
||||
{
|
||||
pub fn perspective_glm_nalgebra_project_same() {
|
||||
let point = Vec4::new(1.0, 0.0, -20.0, 1.0);
|
||||
|
||||
let na_mat : Mat4 = Perspective3::new(16.0f32/9.0f32, 3.14f32/2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let na_mat: Mat4 =
|
||||
Perspective3::new(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32).into_inner();
|
||||
let gl_mat: Mat4 = glm::perspective(16.0f32 / 9.0f32, 3.14f32 / 2.0f32, 0.1f32, 100.0f32);
|
||||
|
||||
let na_pt = na_mat * point;
|
||||
|
|
|
@ -15,21 +15,18 @@ use lapack;
|
|||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"
|
||||
))
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"
|
||||
))
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
|
||||
MatrixN<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
l: MatrixN<N, D>,
|
||||
}
|
||||
|
@ -38,10 +35,12 @@ impl<N: Scalar + Copy, D: Dim> Copy for Cholesky<N, D>
|
|||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Computes the cholesky decomposition of the given symmetric-definite-positive square
|
||||
/// matrix.
|
||||
|
@ -117,7 +116,9 @@ where DefaultAllocator: Allocator<N, D, D>
|
|||
/// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
|
||||
/// the unknown to be determined.
|
||||
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
{
|
||||
let dim = self.l.nrows();
|
||||
|
||||
assert!(
|
||||
|
|
|
@ -34,7 +34,8 @@ use lapack;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Eigen<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
/// The eigenvalues of the decomposed matrix.
|
||||
pub eigenvalues: VectorN<N, D>,
|
||||
|
@ -53,7 +54,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: EigenScalar + RealField, D: Dim> Eigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and eigenvectors of the square matrix `m`.
|
||||
///
|
||||
|
@ -62,8 +64,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|||
mut m: MatrixN<N, D>,
|
||||
left_eigenvectors: bool,
|
||||
eigenvectors: bool,
|
||||
) -> Option<Eigen<N, D>>
|
||||
{
|
||||
) -> Option<Eigen<N, D>> {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
|
@ -229,7 +230,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|||
///
|
||||
/// Panics if the eigenvalue computation does not converge.
|
||||
pub fn complex_eigenvalues(mut m: MatrixN<N, D>) -> VectorN<Complex<N>, D>
|
||||
where DefaultAllocator: Allocator<Complex<N>, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<Complex<N>, D>,
|
||||
{
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{DimDiff, DimSub, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
|
@ -13,25 +13,22 @@ use lapack;
|
|||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Serialize,
|
||||
VectorN<N, DimDiff<D, U1>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimDiff<D, U1>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Deserialize<'de>,
|
||||
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Hessenberg<N: Scalar, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
h: MatrixN<N, D>,
|
||||
tau: VectorN<N, DimDiff<D, U1>>,
|
||||
|
@ -42,10 +39,12 @@ where
|
|||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, DimDiff<D, U1>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the hessenberg decomposition of the matrix `m`.
|
||||
pub fn new(mut m: MatrixN<N, D>) -> Self {
|
||||
|
@ -97,7 +96,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
|||
}
|
||||
|
||||
impl<N: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the matrices `(Q, H)` of this decomposition.
|
||||
#[inline]
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
use num::{One, Zero};
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, DimMin, DimMinimum, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
|
@ -20,25 +20,22 @@ use lapack;
|
|||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Serialize,
|
||||
PermutationSequence<DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
PermutationSequence<DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Deserialize<'de>,
|
||||
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>,
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
p: VectorN<i32, DimMinimum<R, C>>,
|
||||
|
@ -49,7 +46,8 @@ where
|
|||
DefaultAllocator: Allocator<N, R, C> + Allocator<i32, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
VectorN<i32, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: LUScalar, R: Dim, C: Dim> LU<N, R, C>
|
||||
where
|
||||
|
@ -133,7 +131,9 @@ where
|
|||
/// Applies the permutation matrix to a given matrix or vector in-place.
|
||||
#[inline]
|
||||
pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>)
|
||||
where DefaultAllocator: Allocator<N, R, C2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C2>,
|
||||
{
|
||||
let (nrows, ncols) = rhs.shape();
|
||||
|
||||
N::xlaswp(
|
||||
|
@ -148,7 +148,9 @@ where
|
|||
}
|
||||
|
||||
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
let dim = self.lu.nrows();
|
||||
|
||||
assert!(
|
||||
|
@ -236,7 +238,9 @@ where
|
|||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
self.generic_solve_mut(b'N', b)
|
||||
}
|
||||
|
||||
|
@ -245,7 +249,9 @@ where
|
|||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
self.generic_solve_mut(b'T', b)
|
||||
}
|
||||
|
||||
|
@ -253,10 +259,7 @@ where
|
|||
/// be determined.
|
||||
///
|
||||
/// Returns `false` if no solution was found (the decomposed matrix is singular).
|
||||
pub fn solve_adjoint_mut<R2: Dim, C2: Dim>(
|
||||
&self,
|
||||
b: &mut MatrixMN<N, R2, C2>,
|
||||
) -> bool
|
||||
pub fn solve_adjoint_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
|
||||
{
|
||||
|
|
|
@ -4,11 +4,11 @@ use serde::{Deserialize, Serialize};
|
|||
use num::Zero;
|
||||
use num_complex::Complex;
|
||||
|
||||
use crate::ComplexHelper;
|
||||
use na::allocator::Allocator;
|
||||
use na::dimension::{Dim, DimMin, DimMinimum, U1};
|
||||
use na::storage::Storage;
|
||||
use na::{DefaultAllocator, Matrix, MatrixMN, Scalar, VectorN};
|
||||
use crate::ComplexHelper;
|
||||
|
||||
use lapack;
|
||||
|
||||
|
@ -16,25 +16,22 @@ use lapack;
|
|||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Serialize,
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
||||
Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Deserialize<'de>,
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QR<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
qr: MatrixMN<N, R, C>,
|
||||
tau: VectorN<N, DimMinimum<R, C>>,
|
||||
|
@ -45,13 +42,15 @@ where
|
|||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
VectorN<N, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: QRScalar + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the QR decomposition of the matrix `m`.
|
||||
pub fn new(mut m: MatrixMN<N, R, C>) -> Self {
|
||||
|
@ -98,10 +97,11 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
}
|
||||
|
||||
impl<N: QRReal + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Retrieves the matrices `(Q, R)` of this decompositions.
|
||||
pub fn unpack(
|
||||
|
|
|
@ -34,7 +34,8 @@ use lapack;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Schur<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
re: VectorN<N, D>,
|
||||
im: VectorN<N, D>,
|
||||
|
@ -51,7 +52,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: SchurScalar + RealField, D: Dim> Schur<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and real Schur form of the matrix `m`.
|
||||
///
|
||||
|
@ -146,7 +148,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|||
|
||||
/// Computes the complex eigenvalues of the decomposed matrix.
|
||||
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
|
||||
where DefaultAllocator: Allocator<Complex<N>, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<Complex<N>, D>,
|
||||
{
|
||||
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
||||
|
||||
for i in 0..out.len() {
|
||||
|
|
|
@ -15,29 +15,26 @@ use lapack;
|
|||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
Allocator<N, R, R> +
|
||||
Allocator<N, C, C>,
|
||||
MatrixN<N, R>: Serialize,
|
||||
MatrixN<N, C>: Serialize,
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Serialize"))
|
||||
)]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
serde(bound(
|
||||
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
|
||||
Allocator<N, R, R> +
|
||||
Allocator<N, C, C>,
|
||||
MatrixN<N, R>: Deserialize<'de>,
|
||||
MatrixN<N, C>: Deserialize<'de>,
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"
|
||||
))
|
||||
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>,
|
||||
{
|
||||
/// The left-singular vectors `U` of this SVD.
|
||||
pub u: MatrixN<N, R>, // FIXME: should be MatrixMN<N, R, DimMinimum<R, C>>
|
||||
|
@ -53,25 +50,28 @@ where
|
|||
MatrixMN<N, R, R>: Copy,
|
||||
MatrixMN<N, C, C>: Copy,
|
||||
VectorN<N, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
|
||||
/// supported by the Singular Value Decompotition.
|
||||
pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar
|
||||
where DefaultAllocator: Allocator<Self, R, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<Self, R, R>
|
||||
+ Allocator<Self, R, C>
|
||||
+ Allocator<Self, DimMinimum<R, C>>
|
||||
+ Allocator<Self, C, C>
|
||||
+ Allocator<Self, C, C>,
|
||||
{
|
||||
/// Computes the SVD decomposition of `m`.
|
||||
fn compute(m: MatrixMN<Self, R, C>) -> Option<SVD<Self, R, C>>;
|
||||
}
|
||||
|
||||
impl<N: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, R>
|
||||
+ Allocator<N, R, C>
|
||||
+ Allocator<N, DimMinimum<R, C>>
|
||||
+ Allocator<N, C, C>
|
||||
+ Allocator<N, C, C>,
|
||||
{
|
||||
/// Computes the Singular Value Decomposition of `matrix`.
|
||||
pub fn new(m: MatrixMN<N, R, C>) -> Option<Self> {
|
||||
|
|
|
@ -32,7 +32,8 @@ use lapack;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricEigen<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||
{
|
||||
/// The eigenvectors of the decomposed matrix.
|
||||
pub eigenvectors: MatrixN<N, D>,
|
||||
|
@ -50,7 +51,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: SymmetricEigenScalar + RealField, D: Dim> SymmetricEigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
||||
///
|
||||
|
@ -79,8 +81,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|||
fn do_decompose(
|
||||
mut m: MatrixN<N, D>,
|
||||
eigenvectors: bool,
|
||||
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)>
|
||||
{
|
||||
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
#[cfg(any(feature = "alloc", feature = "std"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::dimension::{U1, U2, U3, U4, U5, U6};
|
||||
use crate::base::storage::Owned;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::vec_storage::VecStorage;
|
||||
use crate::base::storage::Owned;
|
||||
use crate::base::Matrix;
|
||||
|
||||
/*
|
||||
|
|
|
@ -179,20 +179,27 @@ pub type VectorSliceN<'a, N, D, RStride = U1, CStride = D> =
|
|||
Matrix<N, D, U1, SliceStorage<'a, N, D, U1, RStride, CStride>>;
|
||||
|
||||
/// A column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSlice<'a, N, RStride = U1, CStride = Dynamic> = VectorSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
pub type DVectorSlice<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceN<'a, N, Dynamic, RStride, CStride>;
|
||||
|
||||
/// A 1D column vector slice.
|
||||
pub type VectorSlice1<'a, N, RStride = U1, CStride = U1> = VectorSliceN<'a, N, U1, RStride, CStride>;
|
||||
pub type VectorSlice1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceN<'a, N, U1, RStride, CStride>;
|
||||
/// A 2D column vector slice.
|
||||
pub type VectorSlice2<'a, N, RStride = U1, CStride = U2> = VectorSliceN<'a, N, U2, RStride, CStride>;
|
||||
pub type VectorSlice2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceN<'a, N, U2, RStride, CStride>;
|
||||
/// A 3D column vector slice.
|
||||
pub type VectorSlice3<'a, N, RStride = U1, CStride = U3> = VectorSliceN<'a, N, U3, RStride, CStride>;
|
||||
pub type VectorSlice3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceN<'a, N, U3, RStride, CStride>;
|
||||
/// A 4D column vector slice.
|
||||
pub type VectorSlice4<'a, N, RStride = U1, CStride = U4> = VectorSliceN<'a, N, U4, RStride, CStride>;
|
||||
pub type VectorSlice4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceN<'a, N, U4, RStride, CStride>;
|
||||
/// A 5D column vector slice.
|
||||
pub type VectorSlice5<'a, N, RStride = U1, CStride = U5> = VectorSliceN<'a, N, U5, RStride, CStride>;
|
||||
pub type VectorSlice5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceN<'a, N, U5, RStride, CStride>;
|
||||
/// A 6D column vector slice.
|
||||
pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> = VectorSliceN<'a, N, U6, RStride, CStride>;
|
||||
pub type VectorSlice6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceN<'a, N, U6, RStride, CStride>;
|
||||
|
||||
/*
|
||||
*
|
||||
|
@ -371,17 +378,24 @@ pub type VectorSliceMutN<'a, N, D, RStride = U1, CStride = D> =
|
|||
Matrix<N, D, U1, SliceStorageMut<'a, N, D, U1, RStride, CStride>>;
|
||||
|
||||
/// A mutable column vector slice dynamic numbers of rows and columns.
|
||||
pub type DVectorSliceMut<'a, N, RStride = U1, CStride = Dynamic> = VectorSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
pub type DVectorSliceMut<'a, N, RStride = U1, CStride = Dynamic> =
|
||||
VectorSliceMutN<'a, N, Dynamic, RStride, CStride>;
|
||||
|
||||
/// A 1D mutable column vector slice.
|
||||
pub type VectorSliceMut1<'a, N, RStride = U1, CStride = U1> = VectorSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
pub type VectorSliceMut1<'a, N, RStride = U1, CStride = U1> =
|
||||
VectorSliceMutN<'a, N, U1, RStride, CStride>;
|
||||
/// A 2D mutable column vector slice.
|
||||
pub type VectorSliceMut2<'a, N, RStride = U1, CStride = U2> = VectorSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
pub type VectorSliceMut2<'a, N, RStride = U1, CStride = U2> =
|
||||
VectorSliceMutN<'a, N, U2, RStride, CStride>;
|
||||
/// A 3D mutable column vector slice.
|
||||
pub type VectorSliceMut3<'a, N, RStride = U1, CStride = U3> = VectorSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
pub type VectorSliceMut3<'a, N, RStride = U1, CStride = U3> =
|
||||
VectorSliceMutN<'a, N, U3, RStride, CStride>;
|
||||
/// A 4D mutable column vector slice.
|
||||
pub type VectorSliceMut4<'a, N, RStride = U1, CStride = U4> = VectorSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
pub type VectorSliceMut4<'a, N, RStride = U1, CStride = U4> =
|
||||
VectorSliceMutN<'a, N, U4, RStride, CStride>;
|
||||
/// A 5D mutable column vector slice.
|
||||
pub type VectorSliceMut5<'a, N, RStride = U1, CStride = U5> = VectorSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
pub type VectorSliceMut5<'a, N, RStride = U1, CStride = U5> =
|
||||
VectorSliceMutN<'a, N, U5, RStride, CStride>;
|
||||
/// A 6D mutable column vector slice.
|
||||
pub type VectorSliceMut6<'a, N, RStride = U1, CStride = U6> = VectorSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
pub type VectorSliceMut6<'a, N, RStride = U1, CStride = U6> =
|
||||
VectorSliceMutN<'a, N, U6, RStride, CStride>;
|
||||
|
|
|
@ -79,7 +79,8 @@ where
|
|||
N: Scalar,
|
||||
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
// XXX: Bad name.
|
||||
/// Restricts the given number of rows to be equal.
|
||||
|
@ -100,4 +101,5 @@ where
|
|||
N: Scalar,
|
||||
DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
|
|
@ -111,7 +111,8 @@ where
|
|||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
GenericArray<N, Prod<R::Value, C::Value>>: Copy,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R, C> Clone for ArrayStorage<N, R, C>
|
||||
where
|
||||
|
@ -136,7 +137,8 @@ where
|
|||
C: DimName,
|
||||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R, C> PartialEq for ArrayStorage<N, R, C>
|
||||
where
|
||||
|
@ -186,13 +188,17 @@ where
|
|||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let it = self.iter().cloned();
|
||||
|
||||
DefaultAllocator::allocate_from_iterator(self.shape().0, self.shape().1, it)
|
||||
|
@ -232,7 +238,8 @@ where
|
|||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for ArrayStorage<N, R, C>
|
||||
where
|
||||
|
@ -242,7 +249,8 @@ where
|
|||
R::Value: Mul<C::Value>,
|
||||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
|
@ -260,7 +268,9 @@ where
|
|||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let mut serializer = serializer.serialize_seq(Some(R::dim() * C::dim()))?;
|
||||
|
||||
for e in self.iter() {
|
||||
|
@ -281,7 +291,9 @@ where
|
|||
Prod<R::Value, C::Value>: ArrayLength<N>,
|
||||
{
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'a> {
|
||||
where
|
||||
D: Deserializer<'a>,
|
||||
{
|
||||
deserializer.deserialize_seq(ArrayStorageVisitor::new())
|
||||
}
|
||||
}
|
||||
|
@ -326,12 +338,15 @@ where
|
|||
|
||||
#[inline]
|
||||
fn visit_seq<V>(self, mut visitor: V) -> Result<ArrayStorage<N, R, C>, V::Error>
|
||||
where V: SeqAccess<'a> {
|
||||
where
|
||||
V: SeqAccess<'a>,
|
||||
{
|
||||
let mut out: Self::Value = unsafe { mem::uninitialized() };
|
||||
let mut curr = 0;
|
||||
|
||||
while let Some(value) = visitor.next_element()? {
|
||||
*out.get_mut(curr).ok_or_else(|| V::Error::invalid_length(curr, &self))? = value;
|
||||
*out.get_mut(curr)
|
||||
.ok_or_else(|| V::Error::invalid_length(curr, &self))? = value;
|
||||
curr += 1;
|
||||
}
|
||||
|
||||
|
|
|
@ -104,7 +104,9 @@ impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn iamax(&self) -> usize
|
||||
where N: Signed {
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
|
||||
|
@ -175,7 +177,9 @@ impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn iamin(&self) -> usize
|
||||
where N: Signed {
|
||||
where
|
||||
N: Signed,
|
||||
{
|
||||
assert!(!self.is_empty(), "The input vector must not be empty.");
|
||||
|
||||
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
|
||||
|
@ -265,7 +269,8 @@ impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matri
|
|||
}
|
||||
|
||||
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn dotx<R2: Dim, C2: Dim, SB>(
|
||||
|
@ -535,7 +540,9 @@ fn array_axcpy<N>(
|
|||
}
|
||||
|
||||
fn array_axc<N>(y: &mut [N], a: N, x: &[N], c: N, stride1: usize, stride2: usize, len: usize)
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul {
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
for i in 0..len {
|
||||
unsafe {
|
||||
*y.get_unchecked_mut(i * stride1) = a.inlined_clone()
|
||||
|
@ -948,7 +955,8 @@ where
|
|||
}
|
||||
|
||||
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn gerx<D2: Dim, D3: Dim, SB, SC>(
|
||||
|
@ -1321,7 +1329,8 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
|||
}
|
||||
|
||||
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
|
||||
where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd + ClosedMul,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn xxgerx<D2: Dim, D3: Dim, SB, SC>(
|
||||
|
@ -1468,7 +1477,8 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
|||
}
|
||||
|
||||
impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S>
|
||||
where N: Scalar + Zero + One + ClosedAdd + ClosedMul
|
||||
where
|
||||
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
|
||||
{
|
||||
/// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
|
||||
///
|
||||
|
|
|
@ -253,7 +253,9 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
|||
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
|
||||
#[inline]
|
||||
pub fn append_scaling_mut(&mut self, scaling: N)
|
||||
where D: DimNameSub<U1> {
|
||||
where
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
|
||||
to_scale *= scaling;
|
||||
}
|
||||
|
@ -261,7 +263,9 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
|||
/// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
|
||||
#[inline]
|
||||
pub fn prepend_scaling_mut(&mut self, scaling: N)
|
||||
where D: DimNameSub<U1> {
|
||||
where
|
||||
D: DimNameSub<U1>,
|
||||
{
|
||||
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
|
||||
to_scale *= scaling;
|
||||
}
|
||||
|
@ -331,17 +335,17 @@ impl<N: Scalar + Zero + One + ClosedMul + ClosedAdd, D: DimName, S: StorageMut<N
|
|||
}
|
||||
|
||||
impl<N: RealField, D: DimNameSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimNameDiff<D, U1>>
|
||||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
|
||||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
|
||||
{
|
||||
/// Transforms the given vector, assuming the matrix `self` uses homogeneous coordinates.
|
||||
#[inline]
|
||||
pub fn transform_vector(
|
||||
&self,
|
||||
v: &VectorN<N, DimNameDiff<D, U1>>,
|
||||
) -> VectorN<N, DimNameDiff<D, U1>>
|
||||
{
|
||||
) -> VectorN<N, DimNameDiff<D, U1>> {
|
||||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||||
let n = normalizer.tr_dot(&v);
|
||||
|
@ -358,8 +362,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
|||
pub fn transform_point(
|
||||
&self,
|
||||
pt: &Point<N, DimNameDiff<D, U1>>,
|
||||
) -> Point<N, DimNameDiff<D, U1>>
|
||||
{
|
||||
) -> Point<N, DimNameDiff<D, U1>> {
|
||||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||||
let translation = self.fixed_slice::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
|
||||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||||
|
|
|
@ -8,8 +8,10 @@ pub struct ShapeConstraint;
|
|||
/// Constraints `C1` and `R2` to be equivalent.
|
||||
pub trait AreMultipliable<R1: Dim, C1: Dim, R2: Dim, C2: Dim>: DimEq<C1, R2> {}
|
||||
|
||||
impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where ShapeConstraint: DimEq<C1, R2>
|
||||
{}
|
||||
impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where
|
||||
ShapeConstraint: DimEq<C1, R2>
|
||||
{
|
||||
}
|
||||
|
||||
/// Constraints `D1` and `D2` to be equivalent.
|
||||
pub trait DimEq<D1: Dim, D2: Dim> {
|
||||
|
|
|
@ -28,7 +28,8 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vec
|
|||
*
|
||||
*/
|
||||
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
|
||||
/// if `nrows != R::to_usize()` or `ncols != C::to_usize()`.
|
||||
|
@ -56,14 +57,18 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// Creates a matrix with all its elements set to 0.
|
||||
#[inline]
|
||||
pub fn zeros_generic(nrows: R, ncols: C) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
Self::from_element_generic(nrows, ncols, N::zero())
|
||||
}
|
||||
|
||||
/// Creates a matrix with all its elements filled by an iterator.
|
||||
#[inline]
|
||||
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
|
||||
where I: IntoIterator<Item = N> {
|
||||
where
|
||||
I: IntoIterator<Item = N>,
|
||||
{
|
||||
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
|
||||
}
|
||||
|
||||
|
@ -102,7 +107,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// coordinates.
|
||||
#[inline]
|
||||
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
|
||||
where F: FnMut(usize, usize) -> N {
|
||||
where
|
||||
F: FnMut(usize, usize) -> N,
|
||||
{
|
||||
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
|
@ -120,7 +127,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// to the identity matrix. All other entries are set to zero.
|
||||
#[inline]
|
||||
pub fn identity_generic(nrows: R, ncols: C) -> Self
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
Self::from_diagonal_element_generic(nrows, ncols, N::one())
|
||||
}
|
||||
|
||||
|
@ -130,7 +139,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// to the identity matrix. All other entries are set to zero.
|
||||
#[inline]
|
||||
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
let mut res = Self::zeros_generic(nrows, ncols);
|
||||
|
||||
for i in 0..crate::min(nrows.value(), ncols.value()) {
|
||||
|
@ -146,7 +157,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
|
||||
#[inline]
|
||||
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
let mut res = Self::zeros_generic(nrows, ncols);
|
||||
assert!(
|
||||
elts.len() <= crate::min(nrows.value(), ncols.value()),
|
||||
|
@ -178,7 +191,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self
|
||||
where SB: Storage<N, U1, C> {
|
||||
where
|
||||
SB: Storage<N, U1, C>,
|
||||
{
|
||||
assert!(rows.len() > 0, "At least one row must be given.");
|
||||
let nrows = R::try_to_usize().unwrap_or(rows.len());
|
||||
let ncols = rows[0].len();
|
||||
|
@ -218,7 +233,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self
|
||||
where SB: Storage<N, R> {
|
||||
where
|
||||
SB: Storage<N, R>,
|
||||
{
|
||||
assert!(columns.len() > 0, "At least one column must be given.");
|
||||
let ncols = C::try_to_usize().unwrap_or(columns.len());
|
||||
let nrows = columns[0].len();
|
||||
|
@ -244,7 +261,9 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
#[inline]
|
||||
#[cfg(feature = "std")]
|
||||
pub fn new_random_generic(nrows: R, ncols: C) -> Self
|
||||
where Standard: Distribution<N> {
|
||||
where
|
||||
Standard: Distribution<N>,
|
||||
{
|
||||
Self::from_fn_generic(nrows, ncols, |_, _| rand::random())
|
||||
}
|
||||
|
||||
|
@ -255,8 +274,7 @@ where DefaultAllocator: Allocator<N, R, C>
|
|||
ncols: C,
|
||||
distribution: &Distr,
|
||||
rng: &mut G,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
|
||||
}
|
||||
|
||||
|
@ -309,7 +327,9 @@ where
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
let (dim, _) = diag.data.shape();
|
||||
let mut res = Self::zeros_generic(dim, dim);
|
||||
|
||||
|
@ -994,7 +1014,9 @@ where
|
|||
/// The column vector with a 1 as its first component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn x() -> Self
|
||||
where R::Value: Cmp<typenum::U0, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U0, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(0) = N::one();
|
||||
|
@ -1006,7 +1028,9 @@ where
|
|||
/// The column vector with a 1 as its second component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn y() -> Self
|
||||
where R::Value: Cmp<typenum::U1, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U1, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(1) = N::one();
|
||||
|
@ -1018,7 +1042,9 @@ where
|
|||
/// The column vector with a 1 as its third component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn z() -> Self
|
||||
where R::Value: Cmp<typenum::U2, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U2, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(2) = N::one();
|
||||
|
@ -1030,7 +1056,9 @@ where
|
|||
/// The column vector with a 1 as its fourth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn w() -> Self
|
||||
where R::Value: Cmp<typenum::U3, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U3, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(3) = N::one();
|
||||
|
@ -1042,7 +1070,9 @@ where
|
|||
/// The column vector with a 1 as its fifth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn a() -> Self
|
||||
where R::Value: Cmp<typenum::U4, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U4, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(4) = N::one();
|
||||
|
@ -1054,7 +1084,9 @@ where
|
|||
/// The column vector with a 1 as its sixth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn b() -> Self
|
||||
where R::Value: Cmp<typenum::U5, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U5, Output = Greater>,
|
||||
{
|
||||
let mut res = Self::zeros();
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(5) = N::one();
|
||||
|
@ -1066,42 +1098,54 @@ where
|
|||
/// The unit column vector with a 1 as its first component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn x_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U0, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U0, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::x())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its second component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn y_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U1, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U1, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::y())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its third component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn z_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U2, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U2, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::z())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its fourth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn w_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U3, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U3, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::w())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its fifth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn a_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U4, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U4, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::a())
|
||||
}
|
||||
|
||||
/// The unit column vector with a 1 as its sixth component, and zero elsewhere.
|
||||
#[inline]
|
||||
pub fn b_axis() -> Unit<Self>
|
||||
where R::Value: Cmp<typenum::U5, Output = Greater> {
|
||||
where
|
||||
R::Value: Cmp<typenum::U5, Output = Greater>,
|
||||
{
|
||||
Unit::new_unchecked(Self::b())
|
||||
}
|
||||
}
|
||||
|
|
|
@ -23,8 +23,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
|||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
let data = SliceStorage::from_raw_parts(
|
||||
data.as_ptr().offset(start as isize),
|
||||
(nrows, ncols),
|
||||
|
@ -44,8 +43,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
|||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
// NOTE: The assertion implements the following formula, but without subtractions to avoid
|
||||
// underflow panics:
|
||||
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
|
||||
|
@ -76,8 +74,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
|||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
let data = SliceStorageMut::from_raw_parts(
|
||||
data.as_mut_ptr().offset(start as isize),
|
||||
(nrows, ncols),
|
||||
|
@ -97,8 +94,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
|||
ncols: C,
|
||||
rstride: RStride,
|
||||
cstride: CStride,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
// NOTE: The assertion implements the following formula, but without subtractions to avoid
|
||||
// underflow panics:
|
||||
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
|
||||
|
@ -108,24 +104,27 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
|
|||
"Matrix slice: input data buffer to small."
|
||||
);
|
||||
|
||||
assert!({
|
||||
assert!(
|
||||
{
|
||||
let nrows = nrows.value();
|
||||
let ncols = ncols.value();
|
||||
let rstride = rstride.value();
|
||||
let cstride = cstride.value();
|
||||
|
||||
nrows * ncols <= 1 ||
|
||||
match (rstride, cstride) {
|
||||
nrows * ncols <= 1
|
||||
|| match (rstride, cstride) {
|
||||
(0, 0) => false, // otherwise: matrix[(0, 0)] == index[(nrows - 1, ncols - 1)],
|
||||
(0, _) => nrows <= 1, // otherwise: matrix[(0, 0)] == index[(nrows - 1, 0)],
|
||||
(_, 0) => ncols <= 1, // otherwise: matrix[(0, 0)] == index[(0, ncols - 1)],
|
||||
(_, _) => { // otherwise: matrix[(0, numer)] == index[(denom, 0)]
|
||||
(_, _) => {
|
||||
// otherwise: matrix[(0, numer)] == index[(denom, 0)]
|
||||
let ratio = Ratio::new(rstride, cstride);
|
||||
nrows <= *ratio.denom() || ncols <= *ratio.numer()
|
||||
}
|
||||
}
|
||||
},
|
||||
"Matrix slice: dimensions and strides result in aliased indices.");
|
||||
"Matrix slice: dimensions and strides result in aliased indices."
|
||||
);
|
||||
|
||||
unsafe {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, 0, nrows, ncols, rstride, cstride)
|
||||
|
@ -144,8 +143,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
|
|||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
|
@ -170,8 +168,7 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
|
|||
start: usize,
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
) -> Self
|
||||
{
|
||||
) -> Self {
|
||||
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
|
||||
}
|
||||
|
||||
|
|
|
@ -15,13 +15,13 @@ use generic_array::ArrayLength;
|
|||
use typenum::Prod;
|
||||
|
||||
use crate::base::allocator::{Allocator, Reallocator};
|
||||
use crate::base::array_storage::ArrayStorage;
|
||||
#[cfg(any(feature = "alloc", feature = "std"))]
|
||||
use crate::base::dimension::Dynamic;
|
||||
use crate::base::dimension::{Dim, DimName};
|
||||
use crate::base::array_storage::ArrayStorage;
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use crate::base::vec_storage::VecStorage;
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::Scalar;
|
||||
|
||||
/*
|
||||
|
@ -54,8 +54,7 @@ where
|
|||
nrows: R,
|
||||
ncols: C,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let mut res = unsafe { Self::allocate_uninitialized(nrows, ncols) };
|
||||
let mut count = 0;
|
||||
|
||||
|
@ -94,8 +93,7 @@ impl<N: Scalar, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator {
|
|||
nrows: Dynamic,
|
||||
ncols: C,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let it = iter.into_iter();
|
||||
let res: Vec<N> = it.collect();
|
||||
assert!(res.len() == nrows.value() * ncols.value(),
|
||||
|
@ -125,8 +123,7 @@ impl<N: Scalar, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator {
|
|||
nrows: R,
|
||||
ncols: Dynamic,
|
||||
iter: I,
|
||||
) -> Self::Buffer
|
||||
{
|
||||
) -> Self::Buffer {
|
||||
let it = iter.into_iter();
|
||||
let res: Vec<N> = it.collect();
|
||||
assert!(res.len() == nrows.value() * ncols.value(),
|
||||
|
@ -157,8 +154,7 @@ where
|
|||
rto: RTo,
|
||||
cto: CTo,
|
||||
buf: <Self as Allocator<N, RFrom, CFrom>>::Buffer,
|
||||
) -> ArrayStorage<N, RTo, CTo>
|
||||
{
|
||||
) -> ArrayStorage<N, RTo, CTo> {
|
||||
let mut res = <Self as Allocator<N, RTo, CTo>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
|
@ -186,8 +182,7 @@ where
|
|||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: ArrayStorage<N, RFrom, CFrom>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let mut res = <Self as Allocator<N, Dynamic, CTo>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
|
@ -215,8 +210,7 @@ where
|
|||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: ArrayStorage<N, RFrom, CFrom>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let mut res = <Self as Allocator<N, RTo, Dynamic>>::allocate_uninitialized(rto, cto);
|
||||
|
||||
let (rfrom, cfrom) = buf.shape();
|
||||
|
@ -239,8 +233,7 @@ impl<N: Scalar, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dynamic, CT
|
|||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: VecStorage<N, Dynamic, CFrom>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
|
@ -255,8 +248,7 @@ impl<N: Scalar, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom, RTo, Dy
|
|||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: VecStorage<N, Dynamic, CFrom>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
|
@ -271,8 +263,7 @@ impl<N: Scalar, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic, Dynamic
|
|||
rto: Dynamic,
|
||||
cto: CTo,
|
||||
buf: VecStorage<N, RFrom, Dynamic>,
|
||||
) -> VecStorage<N, Dynamic, CTo>
|
||||
{
|
||||
) -> VecStorage<N, Dynamic, CTo> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
|
@ -287,8 +278,7 @@ impl<N: Scalar, RFrom: DimName, RTo: DimName> Reallocator<N, RFrom, Dynamic, RTo
|
|||
rto: RTo,
|
||||
cto: Dynamic,
|
||||
buf: VecStorage<N, RFrom, Dynamic>,
|
||||
) -> VecStorage<N, RTo, Dynamic>
|
||||
{
|
||||
) -> VecStorage<N, RTo, Dynamic> {
|
||||
let new_buf = buf.resize(rto.value() * cto.value());
|
||||
VecStorage::new(rto, cto, new_buf)
|
||||
}
|
||||
|
|
|
@ -30,7 +30,9 @@ impl Dynamic {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl Serialize for Dynamic {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.value.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -38,7 +40,9 @@ impl Serialize for Dynamic {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl<'de> Deserialize<'de> for Dynamic {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
usize::deserialize(deserializer).map(|x| Dynamic { value: x })
|
||||
}
|
||||
}
|
||||
|
|
|
@ -22,7 +22,9 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Extracts the upper triangular part of this matrix (including the diagonal).
|
||||
#[inline]
|
||||
pub fn upper_triangle(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.fill_lower_triangle(N::zero(), 1);
|
||||
|
||||
|
@ -32,7 +34,9 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Extracts the lower triangular part of this matrix (including the diagonal).
|
||||
#[inline]
|
||||
pub fn lower_triangle(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.fill_upper_triangle(N::zero(), 1);
|
||||
|
||||
|
@ -64,7 +68,10 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
let src = self.column(j);
|
||||
|
||||
for (destination, source) in irows.clone().enumerate() {
|
||||
unsafe { *res.vget_unchecked_mut(destination) = src.vget_unchecked(*source).inlined_clone() }
|
||||
unsafe {
|
||||
*res.vget_unchecked_mut(destination) =
|
||||
src.vget_unchecked(*source).inlined_clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -104,7 +111,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Fills `self` with the identity matrix.
|
||||
#[inline]
|
||||
pub fn fill_with_identity(&mut self)
|
||||
where N: Zero + One {
|
||||
where
|
||||
N: Zero + One,
|
||||
{
|
||||
self.fill(N::zero());
|
||||
self.fill_diagonal(N::one());
|
||||
}
|
||||
|
@ -693,7 +702,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize(self, new_nrows: usize, new_ncols: usize, val: N) -> DMatrix<N>
|
||||
where DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic>,
|
||||
{
|
||||
self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val)
|
||||
}
|
||||
|
||||
|
@ -703,7 +714,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// rows than `self`, then the extra rows are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically(self, new_nrows: usize, val: N) -> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Reallocator<N, R, C, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
|
||||
{
|
||||
let ncols = self.data.shape().1;
|
||||
self.resize_generic(Dynamic::new(new_nrows), ncols, val)
|
||||
}
|
||||
|
@ -714,7 +727,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// columns than `self`, then the extra columns are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally(self, new_ncols: usize, val: N) -> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
|
||||
{
|
||||
let nrows = self.data.shape().0;
|
||||
self.resize_generic(nrows, Dynamic::new(new_ncols), val)
|
||||
}
|
||||
|
@ -724,7 +739,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
|
||||
pub fn fixed_resize<R2: DimName, C2: DimName>(self, val: N) -> MatrixMN<N, R2, C2>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R2, C2> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R2, C2>,
|
||||
{
|
||||
self.resize_generic(R2::name(), C2::name(), val)
|
||||
}
|
||||
|
||||
|
@ -805,7 +822,9 @@ impl<N: Scalar> DMatrix<N> {
|
|||
///
|
||||
/// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
|
||||
pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic>,
|
||||
{
|
||||
let placeholder = unsafe { Self::new_uninitialized(0, 0) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
let new = old.resize(new_nrows, new_ncols, val);
|
||||
|
@ -815,7 +834,8 @@ impl<N: Scalar> DMatrix<N> {
|
|||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, C: Dim> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
/// Changes the number of rows of this matrix in-place.
|
||||
///
|
||||
|
@ -825,7 +845,9 @@ where DefaultAllocator: Allocator<N, Dynamic, C>
|
|||
/// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C>,
|
||||
{
|
||||
let placeholder =
|
||||
unsafe { Self::new_uninitialized_generic(Dynamic::new(0), self.data.shape().1) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
|
@ -836,7 +858,8 @@ where DefaultAllocator: Allocator<N, Dynamic, C>
|
|||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, R: Dim> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
/// Changes the number of column of this matrix in-place.
|
||||
///
|
||||
|
@ -846,7 +869,9 @@ where DefaultAllocator: Allocator<N, R, Dynamic>
|
|||
/// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic>,
|
||||
{
|
||||
let placeholder =
|
||||
unsafe { Self::new_uninitialized_generic(self.data.shape().0, Dynamic::new(0)) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
|
@ -861,8 +886,7 @@ unsafe fn compress_rows<N: Scalar>(
|
|||
ncols: usize,
|
||||
i: usize,
|
||||
nremove: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let new_nrows = nrows - nremove;
|
||||
|
||||
if new_nrows == 0 || ncols == 0 {
|
||||
|
@ -901,8 +925,7 @@ unsafe fn extend_rows<N: Scalar>(
|
|||
ncols: usize,
|
||||
i: usize,
|
||||
ninsert: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let new_nrows = nrows + ninsert;
|
||||
|
||||
if new_nrows == 0 || ncols == 0 {
|
||||
|
|
|
@ -18,7 +18,9 @@ pub fn reject<G: Gen, F: FnMut(&T) -> bool, T: Arbitrary>(g: &mut G, f: F) -> T
|
|||
#[doc(hidden)]
|
||||
#[inline]
|
||||
pub fn reject_rand<G: Rng + ?Sized, F: FnMut(&T) -> bool, T>(g: &mut G, f: F) -> T
|
||||
where Standard: Distribution<T> {
|
||||
where
|
||||
Standard: Distribution<T>,
|
||||
{
|
||||
use std::iter;
|
||||
iter::repeat(()).map(|_| g.gen()).find(f).unwrap()
|
||||
}
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
//! Indexing
|
||||
|
||||
use crate::base::{Dim, DimName, DimDiff, DimSub, Dynamic, Matrix, MatrixSlice, MatrixSliceMut, Scalar, U1};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{
|
||||
Dim, DimDiff, DimName, DimSub, Dynamic, Matrix, MatrixSlice, MatrixSliceMut, Scalar, U1,
|
||||
};
|
||||
|
||||
use std::ops;
|
||||
|
||||
// N.B.: Not a public trait!
|
||||
trait DimRange<D: Dim>
|
||||
{
|
||||
trait DimRange<D: Dim> {
|
||||
/// The number of elements indexed by this range.
|
||||
type Length: Dim;
|
||||
|
||||
|
@ -68,15 +69,27 @@ impl<D: Dim> DimRange<D> for ops::Range<usize> {
|
|||
|
||||
#[test]
|
||||
fn dimrange_range_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..1), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&((MAX - 1)..MAX), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..MAX), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&(MAX..(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(DimRange::length(&(MAX..MAX), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..MAX), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeFrom<usize> {
|
||||
|
@ -100,18 +113,28 @@ impl<D: Dim> DimRange<D> for ops::RangeFrom<usize> {
|
|||
|
||||
#[test]
|
||||
fn dimrange_rangefrom_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&((MAX - 1)..), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&(MAX..), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim, T: Dim> DimRange<D> for ops::RangeFrom<T>
|
||||
where D: DimSub<T>
|
||||
where
|
||||
D: DimSub<T>,
|
||||
{
|
||||
type Length = DimDiff<D, T>;
|
||||
|
||||
|
@ -133,7 +156,7 @@ where D: DimSub<T>
|
|||
|
||||
#[test]
|
||||
fn dimrange_rangefrom_dimname() {
|
||||
use crate::base::dimension::{U5, U4};
|
||||
use crate::base::dimension::{U4, U5};
|
||||
assert_eq!(DimRange::length(&(U1..), U5), U4);
|
||||
}
|
||||
|
||||
|
@ -173,8 +196,7 @@ impl<D: Dim> DimRange<D> for ops::RangeInclusive<usize> {
|
|||
|
||||
#[inline(always)]
|
||||
fn length(&self, _: D) -> Self::Length {
|
||||
Dynamic::new(
|
||||
if self.end() < self.start() {
|
||||
Dynamic::new(if self.end() < self.start() {
|
||||
0
|
||||
} else {
|
||||
self.end().wrapping_sub(self.start().wrapping_sub(1))
|
||||
|
@ -189,21 +211,38 @@ impl<D: Dim> DimRange<D> for ops::RangeInclusive<usize> {
|
|||
|
||||
#[test]
|
||||
fn dimrange_rangeinclusive_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(0..=0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(0..=0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(MAX..=MAX), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&((MAX-1)..=MAX), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&((MAX-1)..=(MAX-1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(MAX..=MAX), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..=MAX), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&((MAX - 1)..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(DimRange::length(&(0..=0), U1), Dynamic::new(1));
|
||||
assert_eq!(DimRange::length(&((MAX - 1)..=MAX), Dynamic::new(MAX)), Dynamic::new(2));
|
||||
assert_eq!(DimRange::length(&(MAX..=(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(0));
|
||||
assert_eq!(DimRange::length(&(MAX..=MAX), Dynamic::new(MAX)), Dynamic::new(1));
|
||||
assert_eq!(
|
||||
DimRange::length(&((MAX - 1)..=MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(2)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(0)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(MAX..=MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(1)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeTo<usize>
|
||||
{
|
||||
impl<D: Dim> DimRange<D> for ops::RangeTo<usize> {
|
||||
type Length = Dynamic;
|
||||
|
||||
#[inline(always)]
|
||||
|
@ -224,18 +263,26 @@ impl<D: Dim> DimRange<D> for ops::RangeTo<usize>
|
|||
|
||||
#[test]
|
||||
fn dimrange_rangeto_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(..0), U0), true);
|
||||
assert_eq!(DimRange::contained_by(&(..1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(..(MAX - 1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&(..(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(MAX - 1));
|
||||
assert_eq!(DimRange::length(&(..MAX), Dynamic::new(MAX)), Dynamic::new(MAX));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX - 1)
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..MAX), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX)
|
||||
);
|
||||
}
|
||||
|
||||
impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize>
|
||||
{
|
||||
impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize> {
|
||||
type Length = Dynamic;
|
||||
|
||||
#[inline(always)]
|
||||
|
@ -256,19 +303,27 @@ impl<D: Dim> DimRange<D> for ops::RangeToInclusive<usize>
|
|||
|
||||
#[test]
|
||||
fn dimrange_rangetoinclusive_usize() {
|
||||
use std::usize::MAX;
|
||||
use crate::base::dimension::U0;
|
||||
use std::usize::MAX;
|
||||
assert_eq!(DimRange::contained_by(&(..=0), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=1), U0), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=0), U1), true);
|
||||
assert_eq!(DimRange::contained_by(&(..=(MAX)), Dynamic::new(MAX)), false);
|
||||
assert_eq!(DimRange::contained_by(&(..=(MAX - 1)), Dynamic::new(MAX)), true);
|
||||
assert_eq!(DimRange::length(&(..=(MAX - 1)), Dynamic::new(MAX)), Dynamic::new(MAX));
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..=(MAX)), Dynamic::new(MAX)),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::contained_by(&(..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
DimRange::length(&(..=(MAX - 1)), Dynamic::new(MAX)),
|
||||
Dynamic::new(MAX)
|
||||
);
|
||||
}
|
||||
|
||||
/// A helper trait used for indexing operations.
|
||||
pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized {
|
||||
|
||||
/// The output type returned by methods.
|
||||
type Output: 'a;
|
||||
|
||||
|
@ -303,7 +358,9 @@ pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized
|
|||
}
|
||||
|
||||
/// A helper trait used for indexing operations.
|
||||
pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>: MatrixIndex<'a, N, R, C, S> {
|
||||
pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
||||
MatrixIndex<'a, N, R, C, S>
|
||||
{
|
||||
/// The output type returned by methods.
|
||||
type OutputMut: 'a;
|
||||
|
||||
|
@ -432,14 +489,13 @@ pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>:
|
|||
/// 4, 7,
|
||||
/// 5, 8)));
|
||||
/// ```
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
{
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Produces a view of the data at the given index, or
|
||||
/// `None` if the index is out of bounds.
|
||||
#[inline]
|
||||
pub fn get<'a, I>(&'a self, index: I) -> Option<I::Output>
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.get(self)
|
||||
}
|
||||
|
@ -450,7 +506,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::OutputMut>
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_mut(self)
|
||||
}
|
||||
|
@ -460,7 +516,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
#[inline]
|
||||
pub fn index<'a, I>(&'a self, index: I) -> I::Output
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.index(self)
|
||||
}
|
||||
|
@ -471,7 +527,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
pub fn index_mut<'a, I>(&'a mut self, index: I) -> I::OutputMut
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.index_mut(self)
|
||||
}
|
||||
|
@ -481,7 +537,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
#[inline]
|
||||
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Output
|
||||
where
|
||||
I: MatrixIndex<'a, N, R, C, S>
|
||||
I: MatrixIndex<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_unchecked(self)
|
||||
}
|
||||
|
@ -492,7 +548,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::OutputMut
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
I: MatrixIndexMut<'a, N, R, C, S>
|
||||
I: MatrixIndexMut<'a, N, R, C, S>,
|
||||
{
|
||||
index.get_unchecked_mut(self)
|
||||
}
|
||||
|
@ -505,7 +561,7 @@ where
|
|||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
type Output = &'a N;
|
||||
|
||||
|
@ -527,14 +583,15 @@ where
|
|||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: StorageMut<N, R, C>
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
type OutputMut = &'a mut N;
|
||||
|
||||
#[doc(hidden)]
|
||||
#[inline(always)]
|
||||
unsafe fn get_unchecked_mut(self, matrix: &'a mut Matrix<N, R, C, S>) -> Self::OutputMut
|
||||
where S: StorageMut<N, R, C>,
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
matrix.data.get_unchecked_linear_mut(self)
|
||||
}
|
||||
|
@ -547,7 +604,7 @@ where
|
|||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: Storage<N, R, C>
|
||||
S: Storage<N, R, C>,
|
||||
{
|
||||
type Output = &'a N;
|
||||
|
||||
|
@ -572,14 +629,15 @@ where
|
|||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: StorageMut<N, R, C>
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
type OutputMut = &'a mut N;
|
||||
|
||||
#[doc(hidden)]
|
||||
#[inline(always)]
|
||||
unsafe fn get_unchecked_mut(self, matrix: &'a mut Matrix<N, R, C, S>) -> Self::OutputMut
|
||||
where S: StorageMut<N, R, C>,
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
let (row, col) = self;
|
||||
matrix.data.get_unchecked_mut(row, col)
|
||||
|
|
|
@ -5,7 +5,7 @@ use std::mem;
|
|||
|
||||
use crate::base::dimension::{Dim, U1};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{Scalar, Matrix, MatrixSlice, MatrixSliceMut};
|
||||
use crate::base::{Matrix, MatrixSlice, MatrixSliceMut, Scalar};
|
||||
|
||||
macro_rules! iterator {
|
||||
(struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => {
|
||||
|
@ -125,7 +125,6 @@ macro_rules! iterator {
|
|||
iterator!(struct MatrixIter for Storage.ptr -> *const N, &'a N, &'a S);
|
||||
iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a mut S);
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Row iterators.
|
||||
|
@ -135,17 +134,14 @@ iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a
|
|||
/// An iterator through the rows of a matrix.
|
||||
pub struct RowIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
|
||||
mat: &'a Matrix<N, R, C, S>,
|
||||
curr: usize
|
||||
curr: usize,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> {
|
||||
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
|
||||
RowIter {
|
||||
mat, curr: 0
|
||||
RowIter { mat, curr: 0 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> {
|
||||
type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>;
|
||||
|
@ -163,7 +159,10 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIt
|
|||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
(self.mat.nrows() - self.curr, Some(self.mat.nrows() - self.curr))
|
||||
(
|
||||
self.mat.nrows() - self.curr,
|
||||
Some(self.mat.nrows() - self.curr),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -172,19 +171,20 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIt
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for RowIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
|
||||
for RowIter<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.mat.nrows() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// An iterator through the mutable rows of a matrix.
|
||||
pub struct RowIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
|
||||
mat: *mut Matrix<N, R, C, S>,
|
||||
curr: usize,
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> {
|
||||
|
@ -192,19 +192,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a,
|
|||
RowIterMut {
|
||||
mat,
|
||||
curr: 0,
|
||||
phantom: PhantomData
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn nrows(&self) -> usize {
|
||||
unsafe {
|
||||
(*self.mat).nrows()
|
||||
}
|
||||
unsafe { (*self.mat).nrows() }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for RowIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
|
||||
for RowIterMut<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
|
@ -229,14 +228,15 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for Ro
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for RowIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
|
||||
for RowIterMut<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.nrows() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Column iterators.
|
||||
|
@ -246,19 +246,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterat
|
|||
/// An iterator through the columns of a matrix.
|
||||
pub struct ColumnIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
|
||||
mat: &'a Matrix<N, R, C, S>,
|
||||
curr: usize
|
||||
curr: usize,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> {
|
||||
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
|
||||
ColumnIter {
|
||||
mat, curr: 0
|
||||
}
|
||||
ColumnIter { mat, curr: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for ColumnIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator
|
||||
for ColumnIter<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
|
@ -274,7 +273,10 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for Colum
|
|||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
(self.mat.ncols() - self.curr, Some(self.mat.ncols() - self.curr))
|
||||
(
|
||||
self.mat.ncols() - self.curr,
|
||||
Some(self.mat.ncols() - self.curr),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -283,19 +285,20 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for Colum
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for ColumnIter<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
|
||||
for ColumnIter<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.mat.ncols() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// An iterator through the mutable columns of a matrix.
|
||||
pub struct ColumnIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
|
||||
mat: *mut Matrix<N, R, C, S>,
|
||||
curr: usize,
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
|
||||
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> {
|
||||
|
@ -303,19 +306,18 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'
|
|||
ColumnIterMut {
|
||||
mat,
|
||||
curr: 0,
|
||||
phantom: PhantomData
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn ncols(&self) -> usize {
|
||||
unsafe {
|
||||
(*self.mat).ncols()
|
||||
}
|
||||
unsafe { (*self.mat).ncols() }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for ColumnIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
|
||||
for ColumnIterMut<'a, N, R, C, S>
|
||||
{
|
||||
type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>;
|
||||
|
||||
#[inline]
|
||||
|
@ -340,10 +342,11 @@ impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for Co
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for ColumnIterMut<'a, N, R, C, S> {
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
|
||||
for ColumnIterMut<'a, N, R, C, S>
|
||||
{
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.ncols() - self.curr
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -103,7 +103,9 @@ where
|
|||
S: Serialize,
|
||||
{
|
||||
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
|
||||
where T: Serializer {
|
||||
where
|
||||
T: Serializer,
|
||||
{
|
||||
self.data.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -117,7 +119,9 @@ where
|
|||
S: Deserialize<'de>,
|
||||
{
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
S::deserialize(deserializer).map(|x| Matrix {
|
||||
data: x,
|
||||
_phantoms: PhantomData,
|
||||
|
@ -348,7 +352,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Moves this matrix into one that owns its data.
|
||||
#[inline]
|
||||
pub fn into_owned(self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
Matrix::from_data(self.data.into_owned())
|
||||
}
|
||||
|
||||
|
@ -382,7 +388,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Clones this matrix to one that owns its data.
|
||||
#[inline]
|
||||
pub fn clone_owned(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
Matrix::from_data(self.data.clone_owned())
|
||||
}
|
||||
|
||||
|
@ -418,7 +426,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// Returns a matrix containing the result of `f` applied to each of its entries.
|
||||
#[inline]
|
||||
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
|
||||
where DefaultAllocator: Allocator<N2, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N2, R, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
|
||||
|
@ -447,8 +457,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
&self,
|
||||
init_f: impl FnOnce(Option<&N>) -> N2,
|
||||
f: impl FnMut(N2, &N) -> N2,
|
||||
) -> N2
|
||||
{
|
||||
) -> N2 {
|
||||
let mut it = self.iter();
|
||||
let init = init_f(it.next());
|
||||
it.fold(init, f)
|
||||
|
@ -640,7 +649,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use transpose_mut()?"]
|
||||
pub fn transpose(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
unsafe {
|
||||
|
@ -983,7 +994,9 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use adjoint_mut()?"]
|
||||
pub fn adjoint(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
unsafe {
|
||||
|
@ -1011,7 +1024,9 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
|||
#[deprecated(note = "Renamed `self.adjoint()`.")]
|
||||
#[inline]
|
||||
pub fn conjugate_transpose(&self) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
self.adjoint()
|
||||
}
|
||||
|
||||
|
@ -1019,7 +1034,9 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use conjugate_mut()?"]
|
||||
pub fn conjugate(&self) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_conjugate())
|
||||
}
|
||||
|
||||
|
@ -1027,7 +1044,9 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use unscale_mut()?"]
|
||||
pub fn unscale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_unscale(real))
|
||||
}
|
||||
|
||||
|
@ -1035,7 +1054,9 @@ impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use scale_mut()?"]
|
||||
pub fn scale(&self, real: N::SimdRealField) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
self.map(|e| e.simd_scale(real))
|
||||
}
|
||||
}
|
||||
|
@ -1100,7 +1121,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// The diagonal of this matrix.
|
||||
#[inline]
|
||||
pub fn diagonal(&self) -> VectorN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
self.map_diagonal(|e| e)
|
||||
}
|
||||
|
||||
|
@ -1109,7 +1132,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// This is a more efficient version of `self.diagonal().map(f)` since this
|
||||
/// allocates only once.
|
||||
pub fn map_diagonal<N2: Scalar>(&self, mut f: impl FnMut(N) -> N2) -> VectorN<N2, D>
|
||||
where DefaultAllocator: Allocator<N2, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N2, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Unable to get the diagonal of a non-square matrix."
|
||||
|
@ -1130,7 +1155,9 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
|
||||
#[inline]
|
||||
pub fn trace(&self) -> N
|
||||
where N: Scalar + Zero + ClosedAdd {
|
||||
where
|
||||
N: Scalar + Zero + ClosedAdd,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the trace of non-square matrix."
|
||||
|
@ -1151,7 +1178,9 @@ impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`.
|
||||
#[inline]
|
||||
pub fn symmetric_part(&self) -> MatrixMN<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the symmetric part of a non-square matrix."
|
||||
|
@ -1165,7 +1194,9 @@ impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// The hermitian part of `self`, i.e., `0.5 * (self + self.adjoint())`.
|
||||
#[inline]
|
||||
pub fn hermitian_part(&self) -> MatrixMN<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Cannot compute the hermitian part of a non-square matrix."
|
||||
|
@ -1185,7 +1216,9 @@ impl<N: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>
|
|||
/// and setting the diagonal element to `1`.
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> MatrixN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Only square matrices can currently be transformed to homogeneous coordinates."
|
||||
|
@ -1203,7 +1236,9 @@ impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
|
|||
/// coordinates.
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> VectorN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
|
||||
{
|
||||
self.push(N::zero())
|
||||
}
|
||||
|
||||
|
@ -1228,7 +1263,9 @@ impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
|
|||
/// Constructs a new vector of higher dimension by appending `element` to the end of `self`.
|
||||
#[inline]
|
||||
pub fn push(&self, element: N) -> VectorN<N, DimSum<D, U1>>
|
||||
where DefaultAllocator: Allocator<N, DimSum<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
|
||||
{
|
||||
let len = self.len();
|
||||
let hnrows = DimSum::<D, U1>::from_usize(len + 1);
|
||||
let mut res = unsafe { VectorN::<N, _>::new_uninitialized_generic(hnrows, U1) };
|
||||
|
@ -1278,8 +1315,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.relative_eq(other, epsilon, max_relative)
|
||||
}
|
||||
}
|
||||
|
@ -1618,7 +1654,8 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
|
|||
}
|
||||
|
||||
impl<N: Scalar + Field, S: Storage<N, U3>> Vector<N, U3, S>
|
||||
where DefaultAllocator: Allocator<N, U3>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U3>,
|
||||
{
|
||||
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
|
||||
#[inline]
|
||||
|
@ -1675,7 +1712,9 @@ impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
|||
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.axpy(t.inlined_clone(), rhs, N::one() - t);
|
||||
res
|
||||
|
@ -1783,8 +1822,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.as_ref()
|
||||
.relative_eq(other.as_ref(), epsilon, max_relative)
|
||||
}
|
||||
|
|
|
@ -4,9 +4,9 @@ use std::slice;
|
|||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::default_allocator::DefaultAllocator;
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, U1, IsNotStaticOne};
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, IsNotStaticOne, U1};
|
||||
use crate::base::iter::MatrixIter;
|
||||
use crate::base::storage::{Owned, Storage, StorageMut, ContiguousStorage, ContiguousStorageMut};
|
||||
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
|
||||
use crate::base::{Matrix, Scalar};
|
||||
|
||||
macro_rules! slice_storage_impl(
|
||||
|
@ -198,13 +198,31 @@ unsafe impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> StorageMu
|
|||
}
|
||||
}
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorage<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1>
|
||||
for SliceStorage<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1>
|
||||
for SliceStorageMut<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1>
|
||||
for SliceStorageMut<'a, N, R, U1, U1, CStride>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorage<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C>
|
||||
for SliceStorage<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C>
|
||||
for SliceStorageMut<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C>
|
||||
for SliceStorageMut<'a, N, R, C, U1, R>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
|
@ -213,8 +231,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
start: (usize, usize),
|
||||
shape: (usize, usize),
|
||||
steps: (usize, usize),
|
||||
)
|
||||
{
|
||||
) {
|
||||
let my_shape = self.shape();
|
||||
// NOTE: we don't do any subtraction to avoid underflow for zero-sized matrices.
|
||||
//
|
||||
|
@ -811,8 +828,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
pub fn rows_range<RowRange: SliceRange<R>>(
|
||||
&self,
|
||||
rows: RowRange,
|
||||
) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride> {
|
||||
self.slice_range(rows, ..)
|
||||
}
|
||||
|
||||
|
@ -821,8 +837,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
pub fn columns_range<ColRange: SliceRange<C>>(
|
||||
&self,
|
||||
cols: ColRange,
|
||||
) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride> {
|
||||
self.slice_range(.., cols)
|
||||
}
|
||||
}
|
||||
|
@ -851,8 +866,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
|||
pub fn rows_range_mut<RowRange: SliceRange<R>>(
|
||||
&mut self,
|
||||
rows: RowRange,
|
||||
) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride> {
|
||||
self.slice_range_mut(rows, ..)
|
||||
}
|
||||
|
||||
|
@ -861,13 +875,11 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
|||
pub fn columns_range_mut<ColRange: SliceRange<C>>(
|
||||
&mut self,
|
||||
cols: ColRange,
|
||||
) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride>
|
||||
{
|
||||
) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride> {
|
||||
self.slice_range_mut(.., cols)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>>
|
||||
for MatrixSlice<'a, N, R, C, RStride, CStride>
|
||||
where
|
||||
|
|
|
@ -838,7 +838,9 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use add_scalar_mut()?"]
|
||||
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
let mut res = self.clone_owned();
|
||||
res.add_scalar_mut(rhs);
|
||||
res
|
||||
|
@ -847,7 +849,9 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
|
|||
/// Adds a scalar to `self` in-place.
|
||||
#[inline]
|
||||
pub fn add_scalar_mut(&mut self, rhs: N)
|
||||
where S: StorageMut<N, R, C> {
|
||||
where
|
||||
S: StorageMut<N, R, C>,
|
||||
{
|
||||
for e in self.iter_mut() {
|
||||
*e += rhs.inlined_clone()
|
||||
}
|
||||
|
@ -884,7 +888,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn amax(&self) -> N
|
||||
where N: Zero + SimdSigned + SimdPartialOrd {
|
||||
where
|
||||
N: Zero + SimdSigned + SimdPartialOrd,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_abs(),
|
||||
|a, b| a.simd_max(b.simd_abs()),
|
||||
|
@ -902,7 +908,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn camax(&self) -> N::SimdRealField
|
||||
where N: SimdComplexField {
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.unwrap_or(&N::zero()).simd_norm1(),
|
||||
|a, b| a.simd_max(b.simd_norm1()),
|
||||
|
@ -919,7 +927,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn max(&self) -> N
|
||||
where N: SimdPartialOrd + Zero {
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_max(b.inlined_clone()),
|
||||
|
@ -935,7 +945,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn amin(&self) -> N
|
||||
where N: Zero + SimdPartialOrd + SimdSigned {
|
||||
where
|
||||
N: Zero + SimdPartialOrd + SimdSigned,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.simd_abs()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.simd_abs()),
|
||||
|
@ -953,7 +965,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn camin(&self) -> N::SimdRealField
|
||||
where N: SimdComplexField {
|
||||
where
|
||||
N: SimdComplexField,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| {
|
||||
e.map(|e| e.simd_norm1())
|
||||
|
@ -973,7 +987,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn min(&self) -> N
|
||||
where N: SimdPartialOrd + Zero {
|
||||
where
|
||||
N: SimdPartialOrd + Zero,
|
||||
{
|
||||
self.fold_with(
|
||||
|e| e.map(|e| e.inlined_clone()).unwrap_or(N::zero()),
|
||||
|a, b| a.simd_min(b.inlined_clone()),
|
||||
|
|
|
@ -102,7 +102,8 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
}
|
||||
|
||||
impl<N: RealField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
|
||||
#[inline]
|
||||
|
|
|
@ -114,7 +114,9 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_sum(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.sum())
|
||||
}
|
||||
|
||||
|
@ -135,7 +137,9 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_sum_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.sum())
|
||||
}
|
||||
|
||||
|
@ -156,7 +160,9 @@ impl<N: Scalar + ClosedAdd + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn column_sum(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let nrows = self.data.shape().0;
|
||||
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||||
*out += col;
|
||||
|
@ -210,7 +216,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_variance(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.variance())
|
||||
}
|
||||
|
||||
|
@ -227,7 +235,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_variance_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.variance())
|
||||
}
|
||||
|
||||
|
@ -245,7 +255,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn column_variance(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
let mut mean = self.column_mean();
|
||||
|
@ -303,7 +315,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_mean(&self) -> RowVectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, U1, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.mean())
|
||||
}
|
||||
|
||||
|
@ -320,7 +334,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn row_mean_tr(&self) -> VectorN<N, C>
|
||||
where DefaultAllocator: Allocator<N, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.mean())
|
||||
}
|
||||
|
||||
|
@ -337,7 +353,9 @@ impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> M
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn column_mean(&self) -> VectorN<N, R>
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64);
|
||||
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||||
|
|
|
@ -103,11 +103,13 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
|
|||
|
||||
/// Builds a matrix data storage that does not contain any reference.
|
||||
fn into_owned(self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>;
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>;
|
||||
|
||||
/// Clones this data storage to one that does not contain any reference.
|
||||
fn clone_owned(&self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>;
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>;
|
||||
}
|
||||
|
||||
/// Trait implemented by matrix data storage that can provide a mutable access to its elements.
|
||||
|
|
|
@ -5,11 +5,11 @@ use std::io::{Result as IOResult, Write};
|
|||
use alloc::vec::Vec;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use crate::base::default_allocator::DefaultAllocator;
|
||||
use crate::base::dimension::{Dim, DimName, Dynamic, U1};
|
||||
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
|
||||
use crate::base::{Scalar, Vector};
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
@ -89,8 +89,7 @@ impl<N, R: Dim, C: Dim> VecStorage<N, R, C> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C>
|
||||
{
|
||||
impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C> {
|
||||
fn into(self) -> Vec<N> {
|
||||
self.data
|
||||
}
|
||||
|
@ -103,7 +102,8 @@ impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C>
|
|||
*
|
||||
*/
|
||||
unsafe impl<N: Scalar, C: Dim> Storage<N, Dynamic, C> for VecStorage<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
|
||||
{
|
||||
type RStride = U1;
|
||||
type CStride = Dynamic;
|
||||
|
@ -130,13 +130,17 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
|||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
self.clone()
|
||||
}
|
||||
|
||||
|
@ -147,7 +151,8 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
|||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> Storage<N, R, Dynamic> for VecStorage<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
|
||||
{
|
||||
type RStride = U1;
|
||||
type CStride = R;
|
||||
|
@ -174,13 +179,17 @@ where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
|||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_owned(&self) -> Owned<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
self.clone()
|
||||
}
|
||||
|
||||
|
@ -196,7 +205,8 @@ where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
|||
*
|
||||
*/
|
||||
unsafe impl<N: Scalar, C: Dim> StorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
|
||||
{
|
||||
#[inline]
|
||||
fn ptr_mut(&mut self) -> *mut N {
|
||||
|
@ -209,14 +219,19 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
|||
}
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{}
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{}
|
||||
unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
|
||||
{
|
||||
#[inline]
|
||||
fn ptr_mut(&mut self) -> *mut N {
|
||||
|
@ -244,14 +259,17 @@ impl<N: Abomonation, R: Dim, C: Dim> Abomonation for VecStorage<N, R, C> {
|
|||
}
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{}
|
||||
|
||||
impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic> {
|
||||
/// Extends the number of columns of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
///
|
||||
|
@ -259,8 +277,7 @@ impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
|||
/// This function panics if the number of elements yielded by the
|
||||
/// given iterator is not a multiple of the number of rows of the
|
||||
/// `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
|
||||
self.data.extend(iter);
|
||||
self.ncols = Dynamic::new(self.data.len() / self.nrows.value());
|
||||
assert!(self.data.len() % self.nrows.value() == 0,
|
||||
|
@ -268,8 +285,7 @@ impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic>
|
||||
{
|
||||
impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic> {
|
||||
/// Extends the number of columns of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
///
|
||||
|
@ -277,8 +293,7 @@ impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic>
|
|||
/// This function panics if the number of elements yielded by the
|
||||
/// given iterator is not a multiple of the number of rows of the
|
||||
/// `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=&'a N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = &'a N>>(&mut self, iter: I) {
|
||||
self.extend(iter.into_iter().copied())
|
||||
}
|
||||
}
|
||||
|
@ -298,8 +313,7 @@ where
|
|||
/// This function panics if the number of rows of each `Vector`
|
||||
/// yielded by the iterator is not equal to the number of rows
|
||||
/// of this `VecStorage`.
|
||||
fn extend<I: IntoIterator<Item=Vector<N, RV, SV>>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = Vector<N, RV, SV>>>(&mut self, iter: I) {
|
||||
let nrows = self.nrows.value();
|
||||
let iter = iter.into_iter();
|
||||
let (lower, _upper) = iter.size_hint();
|
||||
|
@ -312,12 +326,10 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
impl<N> Extend<N> for VecStorage<N, Dynamic, U1>
|
||||
{
|
||||
impl<N> Extend<N> for VecStorage<N, Dynamic, U1> {
|
||||
/// Extends the number of rows of the `VecStorage` with elements
|
||||
/// from the given iterator.
|
||||
fn extend<I: IntoIterator<Item=N>>(&mut self, iter: I)
|
||||
{
|
||||
fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
|
||||
self.data.extend(iter);
|
||||
self.nrows = Dynamic::new(self.data.len());
|
||||
}
|
||||
|
|
|
@ -13,13 +13,15 @@ use simba::scalar::ComplexField;
|
|||
/// A random orthogonal matrix.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RandomOrthogonal<N: Scalar, D: Dim = Dynamic>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> RandomOrthogonal<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
pub fn unwrap(self) -> MatrixN<N, D> {
|
||||
|
|
|
@ -14,13 +14,15 @@ use crate::debug::RandomOrthogonal;
|
|||
/// A random, well-conditioned, symmetric definite-positive matrix.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RandomSDP<N: Scalar, D: Dim = Dynamic>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> RandomSDP<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
pub fn unwrap(self) -> MatrixN<N, D> {
|
||||
|
|
|
@ -114,7 +114,8 @@ where
|
|||
|
||||
// 2D rotation.
|
||||
impl<N: SimdRealField> Isometry<N, U2, Rotation2<N>>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// Creates a new 2D isometry from a translation and a rotation angle.
|
||||
///
|
||||
|
@ -151,7 +152,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> Isometry<N, U2, UnitComplex<N>>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// Creates a new 2D isometry from a translation and a rotation angle.
|
||||
///
|
||||
|
|
|
@ -46,7 +46,9 @@ impl<N: RealField> PartialEq for Orthographic3<N> {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl<N: RealField + Serialize> Serialize for Orthographic3<N> {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.matrix.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -54,7 +56,9 @@ impl<N: RealField + Serialize> Serialize for Orthographic3<N> {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl<'a, N: RealField + Deserialize<'a>> Deserialize<'a> for Orthographic3<N> {
|
||||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||||
where Des: Deserializer<'a> {
|
||||
where
|
||||
Des: Deserializer<'a>,
|
||||
{
|
||||
let matrix = Matrix4::<N>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Self::from_matrix_unchecked(matrix))
|
||||
|
@ -480,7 +484,9 @@ impl<N: RealField> Orthographic3<N> {
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
|
||||
where SB: Storage<N, U3> {
|
||||
where
|
||||
SB: Storage<N, U3>,
|
||||
{
|
||||
Vector3::new(
|
||||
self.matrix[(0, 0)] * p[0],
|
||||
self.matrix[(1, 1)] * p[1],
|
||||
|
@ -679,7 +685,8 @@ impl<N: RealField> Orthographic3<N> {
|
|||
}
|
||||
|
||||
impl<N: RealField> Distribution<Orthographic3<N>> for Standard
|
||||
where Standard: Distribution<N>
|
||||
where
|
||||
Standard: Distribution<N>,
|
||||
{
|
||||
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Orthographic3<N> {
|
||||
let left = r.gen();
|
||||
|
@ -695,7 +702,8 @@ where Standard: Distribution<N>
|
|||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
impl<N: RealField + Arbitrary> Arbitrary for Orthographic3<N>
|
||||
where Matrix4<N>: Send
|
||||
where
|
||||
Matrix4<N>: Send,
|
||||
{
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||||
let left = Arbitrary::arbitrary(g);
|
||||
|
|
|
@ -47,7 +47,9 @@ impl<N: RealField> PartialEq for Perspective3<N> {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl<N: RealField + Serialize> Serialize for Perspective3<N> {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.matrix.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -55,7 +57,9 @@ impl<N: RealField + Serialize> Serialize for Perspective3<N> {
|
|||
#[cfg(feature = "serde-serialize")]
|
||||
impl<'a, N: RealField + Deserialize<'a>> Deserialize<'a> for Perspective3<N> {
|
||||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||||
where Des: Deserializer<'a> {
|
||||
where
|
||||
Des: Deserializer<'a>,
|
||||
{
|
||||
let matrix = Matrix4::<N>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Self::from_matrix_unchecked(matrix))
|
||||
|
@ -212,7 +216,9 @@ impl<N: RealField> Perspective3<N> {
|
|||
/// Projects a vector. Faster than matrix multiplication.
|
||||
#[inline]
|
||||
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
|
||||
where SB: Storage<N, U3> {
|
||||
where
|
||||
SB: Storage<N, U3>,
|
||||
{
|
||||
let inverse_denom = -N::one() / p[2];
|
||||
Vector3::new(
|
||||
self.matrix[(0, 0)] * p[0] * inverse_denom,
|
||||
|
@ -263,7 +269,8 @@ impl<N: RealField> Perspective3<N> {
|
|||
}
|
||||
|
||||
impl<N: RealField> Distribution<Perspective3<N>> for Standard
|
||||
where Standard: Distribution<N>
|
||||
where
|
||||
Standard: Distribution<N>,
|
||||
{
|
||||
fn sample<'a, R: Rng + ?Sized>(&self, r: &'a mut R) -> Perspective3<N> {
|
||||
let znear = r.gen();
|
||||
|
|
|
@ -23,7 +23,8 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
|
|||
#[repr(C)]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Point<N: Scalar, D: DimName>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// The coordinates of this point, i.e., the shift from the origin.
|
||||
pub coords: VectorN<N, D>,
|
||||
|
@ -53,7 +54,9 @@ where
|
|||
<DefaultAllocator as Allocator<N, D>>::Buffer: Serialize,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.coords.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -65,7 +68,9 @@ where
|
|||
<DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>,
|
||||
{
|
||||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||||
where Des: Deserializer<'a> {
|
||||
where
|
||||
Des: Deserializer<'a>,
|
||||
{
|
||||
let coords = VectorN::<N, D>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Self::from(coords))
|
||||
|
@ -94,7 +99,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: Scalar, D: DimName> Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
|
||||
/// end of it.
|
||||
|
@ -246,8 +252,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.coords
|
||||
.relative_eq(&other.coords, epsilon, max_relative)
|
||||
}
|
||||
|
@ -272,7 +277,8 @@ where
|
|||
impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where DefaultAllocator: Allocator<N, D> {}
|
||||
|
||||
impl<N: Scalar, D: DimName> PartialEq for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn eq(&self, right: &Self) -> bool {
|
||||
|
@ -281,7 +287,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
impl<N: Scalar + PartialOrd, D: DimName> PartialOrd for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
|
@ -313,7 +320,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
* inf/sup
|
||||
*/
|
||||
impl<N: Scalar + SimdPartialOrd, D: DimName> Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Computes the infimum (aka. componentwise min) of two points.
|
||||
#[inline]
|
||||
|
@ -341,7 +349,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
*
|
||||
*/
|
||||
impl<N: Scalar + fmt::Display, D: DimName> fmt::Display for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{")?;
|
||||
|
|
|
@ -13,7 +13,8 @@ use simba::scalar::ClosedDiv;
|
|||
use crate::geometry::Point;
|
||||
|
||||
impl<N: Scalar, D: DimName> Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Creates a new point with uninitialized coordinates.
|
||||
#[inline]
|
||||
|
@ -38,7 +39,9 @@ where DefaultAllocator: Allocator<N, D>
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn origin() -> Self
|
||||
where N: Zero {
|
||||
where
|
||||
N: Zero,
|
||||
{
|
||||
Self::from(VectorN::from_element(N::zero()))
|
||||
}
|
||||
|
||||
|
@ -113,7 +116,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
*
|
||||
*/
|
||||
impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn max_value() -> Self {
|
||||
|
|
|
@ -21,7 +21,8 @@ use crate::geometry::Point;
|
|||
*
|
||||
*/
|
||||
impl<N: Scalar, D: DimName> Index<usize> for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
type Output = N;
|
||||
|
||||
|
@ -32,7 +33,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
impl<N: Scalar, D: DimName> IndexMut<usize> for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
|
||||
|
@ -46,7 +48,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
*
|
||||
*/
|
||||
impl<N: Scalar + ClosedNeg, D: DimName> Neg for Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
type Output = Self;
|
||||
|
||||
|
@ -57,7 +60,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
impl<'a, N: Scalar + ClosedNeg, D: DimName> Neg for &'a Point<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
type Output = Point<N, D>;
|
||||
|
||||
|
|
|
@ -219,7 +219,8 @@ impl<N: SimdRealField> Into<mint::Quaternion<N>> for UnitQuaternion<N> {
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> From<UnitQuaternion<N>> for Matrix4<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn from(q: UnitQuaternion<N>) -> Self {
|
||||
|
@ -228,7 +229,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> From<UnitQuaternion<N>> for Rotation3<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn from(q: UnitQuaternion<N>) -> Self {
|
||||
|
@ -237,7 +239,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> From<Rotation3<N>> for UnitQuaternion<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn from(q: Rotation3<N>) -> Self {
|
||||
|
@ -246,7 +249,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> From<UnitQuaternion<N>> for Matrix3<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn from(q: UnitQuaternion<N>) -> Self {
|
||||
|
|
|
@ -551,7 +551,8 @@ macro_rules! left_scalar_mul_impl(
|
|||
left_scalar_mul_impl!(f32, f64);
|
||||
|
||||
impl<N: SimdRealField> Neg for Quaternion<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
type Output = Quaternion<N>;
|
||||
|
||||
|
@ -562,7 +563,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<'a, N: SimdRealField> Neg for &'a Quaternion<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
type Output = Quaternion<N>;
|
||||
|
||||
|
|
|
@ -26,7 +26,8 @@ use crate::geometry::Point;
|
|||
#[repr(C)]
|
||||
#[derive(Debug)]
|
||||
pub struct Rotation<N: Scalar, D: DimName>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
matrix: MatrixN<N, D>,
|
||||
}
|
||||
|
@ -87,7 +88,9 @@ where
|
|||
Owned<N, D, D>: Serialize,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.matrix.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -99,7 +102,9 @@ where
|
|||
Owned<N, D, D>: Deserialize<'a>,
|
||||
{
|
||||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||||
where Des: Deserializer<'a> {
|
||||
where
|
||||
Des: Deserializer<'a>,
|
||||
{
|
||||
let matrix = MatrixN::<N, D>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Self::from_matrix_unchecked(matrix))
|
||||
|
@ -107,7 +112,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: Scalar, D: DimName> Rotation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// A reference to the underlying matrix representation of this rotation.
|
||||
///
|
||||
|
@ -440,7 +446,8 @@ where
|
|||
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}
|
||||
|
||||
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn eq(&self, right: &Self) -> bool {
|
||||
|
@ -484,8 +491,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.matrix
|
||||
.relative_eq(&other.matrix, epsilon, max_relative)
|
||||
}
|
||||
|
|
|
@ -31,7 +31,8 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, Scalar, Unit, Vector, Vect
|
|||
use crate::geometry::{Point, Rotation};
|
||||
|
||||
impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
type Output = N;
|
||||
|
||||
|
|
|
@ -55,7 +55,9 @@ impl<N: SimdRealField> Rotation2<N> {
|
|||
/// convergence parameters and starting solution.
|
||||
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
|
||||
pub fn from_matrix(m: &Matrix2<N>) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity())
|
||||
}
|
||||
|
||||
|
@ -72,7 +74,9 @@ impl<N: SimdRealField> Rotation2<N> {
|
|||
/// to the actual solution is provided. Can be set to `Rotation2::identity()` if no other
|
||||
/// guesses come to mind.
|
||||
pub fn from_matrix_eps(m: &Matrix2<N>, eps: N, mut max_iter: usize, guess: Self) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
if max_iter == 0 {
|
||||
max_iter = usize::max_value();
|
||||
}
|
||||
|
@ -199,7 +203,9 @@ impl<N: SimdRealField> Rotation2<N> {
|
|||
/// computations might cause the matrix from progressively not being orthonormal anymore.
|
||||
#[inline]
|
||||
pub fn renormalize(&mut self)
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let mut c = UnitComplex::from(*self);
|
||||
let _ = c.renormalize();
|
||||
|
||||
|
@ -262,7 +268,8 @@ where
|
|||
*
|
||||
*/
|
||||
impl<N: SimdRealField> Rotation3<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// Builds a 3 dimensional rotation matrix from an axis and an angle.
|
||||
///
|
||||
|
@ -299,7 +306,9 @@ where N::Element: SimdRealField
|
|||
/// convergence parameters and starting solution.
|
||||
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
|
||||
pub fn from_matrix(m: &Matrix3<N>) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity())
|
||||
}
|
||||
|
||||
|
@ -316,7 +325,9 @@ where N::Element: SimdRealField
|
|||
/// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other
|
||||
/// guesses come to mind.
|
||||
pub fn from_matrix_eps(m: &Matrix3<N>, eps: N, mut max_iter: usize, guess: Self) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
if max_iter == 0 {
|
||||
max_iter = usize::max_value();
|
||||
}
|
||||
|
@ -391,7 +402,9 @@ where N::Element: SimdRealField
|
|||
/// assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
|
||||
/// ```
|
||||
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
|
||||
where SB: Storage<N, U3> {
|
||||
where
|
||||
SB: Storage<N, U3>,
|
||||
{
|
||||
angle.simd_ne(N::zero()).if_else(
|
||||
|| {
|
||||
let ux = axis.as_ref()[0];
|
||||
|
@ -456,7 +469,9 @@ where N::Element: SimdRealField
|
|||
/// The angles are produced in the form (roll, pitch, yaw).
|
||||
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
|
||||
pub fn to_euler_angles(&self) -> (N, N, N)
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
self.euler_angles()
|
||||
}
|
||||
|
||||
|
@ -475,7 +490,9 @@ where N::Element: SimdRealField
|
|||
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
pub fn euler_angles(&self) -> (N, N, N)
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
|
||||
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
|
||||
if self[(2, 0)].abs() < N::one() {
|
||||
|
@ -498,7 +515,9 @@ where N::Element: SimdRealField
|
|||
/// computations might cause the matrix from progressively not being orthonormal anymore.
|
||||
#[inline]
|
||||
pub fn renormalize(&mut self)
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let mut c = UnitQuaternion::from(*self);
|
||||
let _ = c.renormalize();
|
||||
|
||||
|
@ -717,7 +736,9 @@ where N::Element: SimdRealField
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn axis(&self) -> Option<Unit<Vector3<N>>>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let axis = VectorN::<N, U3>::new(
|
||||
self.matrix()[(2, 1)] - self.matrix()[(1, 2)],
|
||||
self.matrix()[(0, 2)] - self.matrix()[(2, 0)],
|
||||
|
@ -739,7 +760,9 @@ where N::Element: SimdRealField
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn scaled_axis(&self) -> Vector3<N>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
if let Some(axis) = self.axis() {
|
||||
axis.into_inner() * self.angle()
|
||||
} else {
|
||||
|
@ -768,7 +791,9 @@ where N::Element: SimdRealField
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
if let Some(axis) = self.axis() {
|
||||
Some((axis, self.angle()))
|
||||
} else {
|
||||
|
@ -825,7 +850,9 @@ where N::Element: SimdRealField
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn powf(&self, n: N) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
if let Some(axis) = self.axis() {
|
||||
Self::from_axis_angle(&axis, self.angle() * n)
|
||||
} else if self.matrix()[(0, 0)] < N::zero() {
|
||||
|
|
|
@ -40,7 +40,8 @@ use crate::geometry::{AbstractRotation, Isometry, Point, Translation};
|
|||
Owned<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
pub struct Similarity<N: Scalar, D: DimName, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// The part of this similarity that does not include the scaling factor.
|
||||
pub isometry: Isometry<N, D, R>,
|
||||
|
@ -87,7 +88,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: Scalar + Zero, D: DimName, R: AbstractRotation<N, D> + Clone> Clone for Similarity<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
|
@ -127,7 +129,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: Scalar, D: DimName, R> Similarity<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// The scaling factor of this similarity transformation.
|
||||
#[inline]
|
||||
|
@ -329,7 +332,8 @@ where
|
|||
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
|
||||
// explicit struct construction is prevented by the private scaling factor).
|
||||
impl<N: SimdRealField, D: DimName, R> Similarity<N, D, R>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Converts this similarity into its equivalent homogeneous transformation matrix.
|
||||
#[inline]
|
||||
|
@ -404,8 +408,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.isometry
|
||||
.relative_eq(&other.isometry, epsilon, max_relative)
|
||||
&& self
|
||||
|
|
|
@ -158,7 +158,8 @@ super_tcategory_impl!(
|
|||
#[repr(C)]
|
||||
#[derive(Debug)]
|
||||
pub struct Transform<N: RealField, D: DimNameAdd<U1>, C: TCategory>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
matrix: MatrixN<N, DimNameSum<D, U1>>,
|
||||
_phantom: PhantomData<C>,
|
||||
|
@ -181,7 +182,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> Clone for Transform<N, D, C>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
|
@ -196,7 +198,9 @@ where
|
|||
Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Serialize,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where S: Serializer {
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
self.matrix.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
@ -208,18 +212,23 @@ where
|
|||
Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Deserialize<'a>,
|
||||
{
|
||||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||||
where Des: Deserializer<'a> {
|
||||
where
|
||||
Des: Deserializer<'a>,
|
||||
{
|
||||
let matrix = MatrixN::<N, DimNameSum<D, U1>>::deserialize(deserializer)?;
|
||||
|
||||
Ok(Transform::from_matrix_unchecked(matrix))
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: RealField + Eq, D: DimNameAdd<U1>, C: TCategory> Eq for Transform<N, D, C> where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
{}
|
||||
impl<N: RealField + Eq, D: DimNameAdd<U1>, C: TCategory> Eq for Transform<N, D, C> where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> PartialEq for Transform<N, D, C>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
#[inline]
|
||||
fn eq(&self, right: &Self) -> bool {
|
||||
|
@ -228,7 +237,8 @@ where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|||
}
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
/// Creates a new transformation from the given homogeneous matrix. The transformation category
|
||||
/// of `Self` is not checked to be verified by the given matrix.
|
||||
|
@ -398,7 +408,9 @@ where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use inverse_mut()?"]
|
||||
pub fn inverse(self) -> Transform<N, D, C>
|
||||
where C: SubTCategoryOf<TProjective> {
|
||||
where
|
||||
C: SubTCategoryOf<TProjective>,
|
||||
{
|
||||
// FIXME: specialize for TAffine?
|
||||
Transform::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
|
||||
}
|
||||
|
@ -451,7 +463,9 @@ where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self)
|
||||
where C: SubTCategoryOf<TProjective> {
|
||||
where
|
||||
C: SubTCategoryOf<TProjective>,
|
||||
{
|
||||
let _ = self.matrix.try_inverse_mut();
|
||||
}
|
||||
}
|
||||
|
@ -509,7 +523,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>> Transform<N, D, TGeneral>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
/// A mutable reference to underlying matrix. Use `.matrix_mut_unchecked` instead if this
|
||||
/// transformation category is not `TGeneral`.
|
||||
|
@ -553,8 +568,7 @@ where
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.matrix
|
||||
.relative_eq(&other.matrix, epsilon, max_relative)
|
||||
}
|
||||
|
|
|
@ -9,7 +9,8 @@ use crate::base::{DefaultAllocator, MatrixN};
|
|||
use crate::geometry::{TCategory, Transform};
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
/// Creates a new identity transform.
|
||||
///
|
||||
|
@ -46,7 +47,8 @@ where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|||
}
|
||||
|
||||
impl<N: RealField, D: DimNameAdd<U1>, C: TCategory> One for Transform<N, D, C>
|
||||
where DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
/// Creates a new identity transform.
|
||||
#[inline]
|
||||
|
|
|
@ -16,7 +16,8 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
|
|||
use crate::geometry::Translation;
|
||||
|
||||
impl<N: Scalar + Zero, D: DimName> Translation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Creates a new identity translation.
|
||||
///
|
||||
|
@ -39,7 +40,8 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
impl<N: Scalar + Zero + ClosedAdd, D: DimName> One for Translation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn one() -> Self {
|
||||
|
|
|
@ -167,7 +167,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Translation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn from(vector: VectorN<N, D>) -> Self {
|
||||
|
|
|
@ -41,7 +41,8 @@ impl<N: SimdRealField> Normed for Complex<N> {
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> UnitComplex<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// The rotation angle in `]-pi; pi]` of this unit complex number.
|
||||
///
|
||||
|
@ -100,7 +101,9 @@ where N::Element: SimdRealField
|
|||
/// Returns `None` if the angle is zero.
|
||||
#[inline]
|
||||
pub fn axis_angle(&self) -> Option<(Unit<Vector1<N>>, N)>
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let ang = self.angle();
|
||||
|
||||
if ang.is_zero() {
|
||||
|
@ -391,8 +394,7 @@ impl<N: RealField> RelativeEq for UnitComplex<N> {
|
|||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool
|
||||
{
|
||||
) -> bool {
|
||||
self.re.relative_eq(&other.re, epsilon, max_relative)
|
||||
&& self.im.relative_eq(&other.im, epsilon, max_relative)
|
||||
}
|
||||
|
|
|
@ -14,7 +14,8 @@ use simba::scalar::RealField;
|
|||
use simba::simd::SimdRealField;
|
||||
|
||||
impl<N: SimdRealField> UnitComplex<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
/// The unit complex number multiplicative identity.
|
||||
///
|
||||
|
@ -138,7 +139,9 @@ where N::Element: SimdRealField
|
|||
/// convergence parameters and starting solution.
|
||||
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
|
||||
pub fn from_matrix(m: &Matrix2<N>) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
Rotation2::from_matrix(m).into()
|
||||
}
|
||||
|
||||
|
@ -155,7 +158,9 @@ where N::Element: SimdRealField
|
|||
/// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
|
||||
/// guesses come to mind.
|
||||
pub fn from_matrix_eps(m: &Matrix2<N>, eps: N, max_iter: usize, guess: Self) -> Self
|
||||
where N: RealField {
|
||||
where
|
||||
N: RealField,
|
||||
{
|
||||
let guess = Rotation2::from(guess);
|
||||
Rotation2::from_matrix_eps(m, eps, max_iter, guess).into()
|
||||
}
|
||||
|
@ -276,7 +281,8 @@ where N::Element: SimdRealField
|
|||
}
|
||||
|
||||
impl<N: SimdRealField> One for UnitComplex<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn one() -> Self {
|
||||
|
@ -298,7 +304,8 @@ where
|
|||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
impl<N: SimdRealField + Arbitrary> Arbitrary for UnitComplex<N>
|
||||
where N::Element: SimdRealField
|
||||
where
|
||||
N::Element: SimdRealField,
|
||||
{
|
||||
#[inline]
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
use std::fs;
|
||||
use std::path::Path;
|
||||
|
||||
use pest::Parser;
|
||||
use crate::sparse::CsMatrix;
|
||||
use crate::RealField;
|
||||
use pest::Parser;
|
||||
|
||||
#[derive(Parser)]
|
||||
#[grammar = "io/matrix_market.pest"]
|
||||
|
|
|
@ -13,7 +13,9 @@ use crate::base::{DefaultAllocator, MatrixN, VectorN};
|
|||
///
|
||||
/// See https://arxiv.org/pdf/1401.5766.pdf
|
||||
pub fn balance_parlett_reinsch<N: RealField, D: Dim>(m: &mut MatrixN<N, D>) -> VectorN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
assert!(m.is_square(), "Unable to balance a non-square matrix.");
|
||||
|
||||
let dim = m.data.shape().0;
|
||||
|
@ -65,7 +67,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> {
|
|||
|
||||
/// Computes in-place `D * m * D.inverse()`, where `D` is the matrix with diagonal `d`.
|
||||
pub fn unbalance<N: RealField, D: Dim>(m: &mut MatrixN<N, D>, d: &VectorN<N, D>)
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
assert!(m.is_square(), "Unable to unbalance a non-square matrix.");
|
||||
assert_eq!(m.nrows(), d.len(), "Unbalancing: mismatched dimensions.");
|
||||
|
||||
|
|
|
@ -171,9 +171,11 @@ where
|
|||
MatrixN<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, DimMinimum<R, C>, C>,
|
||||
)
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C> {
|
||||
+ Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
// FIXME: optimize by calling a reallocator.
|
||||
(self.u(), self.d(), self.v_t())
|
||||
}
|
||||
|
@ -181,7 +183,9 @@ where
|
|||
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
||||
#[inline]
|
||||
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.uv.data.shape();
|
||||
|
||||
let d = nrows.min(ncols);
|
||||
|
@ -198,7 +202,9 @@ where
|
|||
// FIXME: code duplication with householder::assemble_q.
|
||||
// Except that we are returning a rectangular matrix here.
|
||||
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.uv.data.shape();
|
||||
|
||||
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
|
||||
|
@ -226,7 +232,9 @@ where
|
|||
|
||||
/// Computes the orthogonal matrix `V_t` of this `U * D * V_t` decomposition.
|
||||
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.uv.data.shape();
|
||||
let min_nrows_ncols = nrows.min(ncols);
|
||||
|
||||
|
@ -259,13 +267,17 @@ where
|
|||
|
||||
/// The diagonal part of this decomposed matrix.
|
||||
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
|
||||
{
|
||||
self.diagonal.map(|e| e.modulus())
|
||||
}
|
||||
|
||||
/// The off-diagonal part of this decomposed matrix.
|
||||
pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>>
|
||||
where DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
self.off_diagonal.map(|e| e.modulus())
|
||||
}
|
||||
|
||||
|
|
|
@ -24,7 +24,8 @@ use crate::storage::{Storage, StorageMut};
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
chol: MatrixN<N, D>,
|
||||
}
|
||||
|
@ -37,7 +38,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
||||
///
|
||||
|
@ -325,7 +327,8 @@ where DefaultAllocator: Allocator<N, D, D>
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
|
|
|
@ -64,7 +64,10 @@ impl<N: RealField, D1: Dim, S1: Storage<N, D1>> Vector<N, D1, S1> {
|
|||
/// # Errors
|
||||
/// Inputs must satisfy `self.len() >= kernel.len() > 0`.
|
||||
///
|
||||
pub fn convolve_valid<D2, S2>(&self, kernel: Vector<N, D2, S2>) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
|
||||
pub fn convolve_valid<D2, S2>(
|
||||
&self,
|
||||
kernel: Vector<N, D2, S2>,
|
||||
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
|
||||
where
|
||||
D1: DimAdd<U1>,
|
||||
D2: Dim,
|
||||
|
|
|
@ -13,7 +13,9 @@ impl<N: ComplexField, D: DimMin<D, Output = D>, S: Storage<N, D, D>> SquareMatri
|
|||
/// If the matrix has a dimension larger than 3, an LU decomposition is used.
|
||||
#[inline]
|
||||
pub fn determinant(&self) -> N
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>,
|
||||
{
|
||||
assert!(
|
||||
self.is_square(),
|
||||
"Unable to compute the determinant of a non-square matrix."
|
||||
|
|
|
@ -29,7 +29,8 @@ use crate::linalg::PermutationSequence;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct FullPivLU<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
p: PermutationSequence<DimMinimum<R, C>>,
|
||||
|
@ -45,7 +46,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
///
|
||||
|
@ -103,7 +105,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
/// The lower triangular matrix of this decomposition.
|
||||
#[inline]
|
||||
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
||||
m.fill_upper_triangle(N::zero(), 1);
|
||||
|
@ -114,7 +118,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
/// The upper triangular matrix of this decomposition.
|
||||
#[inline]
|
||||
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
||||
}
|
||||
|
@ -141,7 +147,8 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
MatrixMN<N, DimMinimum<R, C>, C>,
|
||||
PermutationSequence<DimMinimum<R, C>>,
|
||||
)
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
// Use reallocation for either l or u.
|
||||
let l = self.l();
|
||||
|
@ -154,7 +161,8 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>,
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
///
|
||||
|
@ -259,7 +267,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
///
|
||||
|
|
|
@ -27,7 +27,8 @@ use crate::linalg::householder;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Hessenberg<N: ComplexField, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
hess: MatrixN<N, D>,
|
||||
subdiag: VectorN<N, DimDiff<D, U1>>,
|
||||
|
@ -42,7 +43,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the Hessenberg decomposition using householder reflections.
|
||||
pub fn new(hess: MatrixN<N, D>) -> Self {
|
||||
|
@ -131,7 +133,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimD
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||||
pub fn hessenberg(self) -> Hessenberg<N, D> {
|
||||
|
|
|
@ -109,7 +109,9 @@ pub fn clear_row_unchecked<N: ComplexField, R: Dim, C: Dim>(
|
|||
/// matrices.
|
||||
#[doc(hidden)]
|
||||
pub fn assemble_q<N: ComplexField, D: Dim>(m: &MatrixN<N, D>, signs: &[N]) -> MatrixN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(m.is_square());
|
||||
let dim = m.data.shape().0;
|
||||
|
||||
|
|
|
@ -12,7 +12,9 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
#[inline]
|
||||
#[must_use = "Did you mean to use try_inverse_mut()?"]
|
||||
pub fn try_inverse(self) -> Option<MatrixN<N, D>>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
let mut me = self.into_owned();
|
||||
if me.try_inverse_mut() {
|
||||
Some(me)
|
||||
|
@ -27,7 +29,9 @@ impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
|||
/// inversion fails.
|
||||
#[inline]
|
||||
pub fn try_inverse_mut(&mut self) -> bool
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
assert!(self.is_square(), "Unable to invert a non-square matrix.");
|
||||
|
||||
let dim = self.shape().0;
|
||||
|
|
|
@ -29,7 +29,8 @@ use crate::linalg::PermutationSequence;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LU<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
p: PermutationSequence<DimMinimum<R, C>>,
|
||||
|
@ -84,7 +85,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> LU<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
||||
|
@ -126,7 +128,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
/// The lower triangular matrix of this decomposition.
|
||||
#[inline]
|
||||
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
||||
m.fill_upper_triangle(N::zero(), 1);
|
||||
|
@ -141,7 +145,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
MatrixMN<N, R, DimMinimum<R, C>>,
|
||||
PermutationSequence<DimMinimum<R, C>>,
|
||||
)
|
||||
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
|
||||
m.fill_upper_triangle(N::zero(), 1);
|
||||
|
@ -152,7 +158,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
/// The lower triangular matrix of this decomposition.
|
||||
#[inline]
|
||||
pub fn l_unpack(self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
|
||||
m.fill_upper_triangle(N::zero(), 1);
|
||||
|
@ -163,7 +171,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
/// The upper triangular matrix of this decomposition.
|
||||
#[inline]
|
||||
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.lu.data.shape();
|
||||
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
||||
}
|
||||
|
@ -183,9 +193,11 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
MatrixMN<N, R, DimMinimum<R, C>>,
|
||||
MatrixMN<N, DimMinimum<R, C>, C>,
|
||||
)
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Reallocator<N, R, C, R, DimMinimum<R, C>> {
|
||||
+ Reallocator<N, R, C, R, DimMinimum<R, C>>,
|
||||
{
|
||||
// Use reallocation for either l or u.
|
||||
let u = self.u();
|
||||
let (l, p) = self.l_unpack_with_p();
|
||||
|
@ -195,7 +207,8 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> LU<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>,
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
///
|
||||
|
@ -368,7 +381,8 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
pub fn lu(self) -> LU<N, R, C> {
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
pub mod balancing;
|
||||
mod bidiagonal;
|
||||
mod cholesky;
|
||||
mod convolution;
|
||||
mod determinant;
|
||||
mod full_piv_lu;
|
||||
pub mod givens;
|
||||
|
@ -17,7 +18,6 @@ mod solve;
|
|||
mod svd;
|
||||
mod symmetric_eigen;
|
||||
mod symmetric_tridiagonal;
|
||||
mod convolution;
|
||||
|
||||
//// FIXME: Not complete enough for publishing.
|
||||
//// This handles only cases where each eigenvalue has multiplicity one.
|
||||
|
@ -25,6 +25,7 @@ mod convolution;
|
|||
|
||||
pub use self::bidiagonal::*;
|
||||
pub use self::cholesky::*;
|
||||
pub use self::convolution::*;
|
||||
pub use self::full_piv_lu::*;
|
||||
pub use self::hessenberg::*;
|
||||
pub use self::lu::*;
|
||||
|
@ -34,4 +35,3 @@ pub use self::schur::*;
|
|||
pub use self::svd::*;
|
||||
pub use self::symmetric_eigen::*;
|
||||
pub use self::symmetric_tridiagonal::*;
|
||||
pub use self::convolution::*;
|
||||
|
|
|
@ -25,7 +25,8 @@ use crate::storage::StorageMut;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct PermutationSequence<D: Dim>
|
||||
where DefaultAllocator: Allocator<(usize, usize), D>
|
||||
where
|
||||
DefaultAllocator: Allocator<(usize, usize), D>,
|
||||
{
|
||||
len: usize,
|
||||
ipiv: VectorN<(usize, usize), D>,
|
||||
|
@ -39,7 +40,8 @@ where
|
|||
}
|
||||
|
||||
impl<D: DimName> PermutationSequence<D>
|
||||
where DefaultAllocator: Allocator<(usize, usize), D>
|
||||
where
|
||||
DefaultAllocator: Allocator<(usize, usize), D>,
|
||||
{
|
||||
/// Creates a new statically-allocated sequence of `D` identity permutations.
|
||||
#[inline]
|
||||
|
@ -50,7 +52,8 @@ where DefaultAllocator: Allocator<(usize, usize), D>
|
|||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl PermutationSequence<Dynamic>
|
||||
where DefaultAllocator: Allocator<(usize, usize), Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<(usize, usize), Dynamic>,
|
||||
{
|
||||
/// Creates a new dynamically-allocated sequence of `n` identity permutations.
|
||||
#[inline]
|
||||
|
@ -60,7 +63,8 @@ where DefaultAllocator: Allocator<(usize, usize), Dynamic>
|
|||
}
|
||||
|
||||
impl<D: Dim> PermutationSequence<D>
|
||||
where DefaultAllocator: Allocator<(usize, usize), D>
|
||||
where
|
||||
DefaultAllocator: Allocator<(usize, usize), D>,
|
||||
{
|
||||
/// Creates a new sequence of D identity permutations.
|
||||
#[inline]
|
||||
|
@ -90,7 +94,9 @@ where DefaultAllocator: Allocator<(usize, usize), D>
|
|||
/// Applies this sequence of permutations to the rows of `rhs`.
|
||||
#[inline]
|
||||
pub fn permute_rows<N: Scalar, R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
where S2: StorageMut<N, R2, C2> {
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
{
|
||||
for i in self.ipiv.rows_range(..self.len).iter() {
|
||||
rhs.swap_rows(i.0, i.1)
|
||||
}
|
||||
|
@ -98,10 +104,8 @@ where DefaultAllocator: Allocator<(usize, usize), D>
|
|||
|
||||
/// Applies this sequence of permutations in reverse to the rows of `rhs`.
|
||||
#[inline]
|
||||
pub fn inv_permute_rows<N: Scalar, R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
rhs: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
pub fn inv_permute_rows<N: Scalar, R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
{
|
||||
for i in 0..self.len {
|
||||
|
@ -112,10 +116,8 @@ where DefaultAllocator: Allocator<(usize, usize), D>
|
|||
|
||||
/// Applies this sequence of permutations to the columns of `rhs`.
|
||||
#[inline]
|
||||
pub fn permute_columns<N: Scalar, R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
rhs: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
pub fn permute_columns<N: Scalar, R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
{
|
||||
for i in self.ipiv.rows_range(..self.len).iter() {
|
||||
|
|
|
@ -30,7 +30,8 @@ use crate::linalg::householder;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QR<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
qr: MatrixMN<N, R, C>,
|
||||
diag: VectorN<N, DimMinimum<R, C>>,
|
||||
|
@ -45,7 +46,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the QR decomposition using householder reflections.
|
||||
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
||||
|
@ -74,7 +76,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
|||
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
||||
#[inline]
|
||||
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.qr.data.shape();
|
||||
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
|
||||
res.set_partial_diagonal(self.diag.iter().map(|e| N::from_real(e.modulus())));
|
||||
|
@ -86,7 +90,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
|||
/// This is usually faster than `r` but consumes `self`.
|
||||
#[inline]
|
||||
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||||
where DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C> {
|
||||
where
|
||||
DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
|
||||
{
|
||||
let (nrows, ncols) = self.qr.data.shape();
|
||||
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, N::zero());
|
||||
res.fill_lower_triangle(N::zero(), 1);
|
||||
|
@ -96,7 +102,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
|||
|
||||
/// Computes the orthogonal matrix `Q` of this decomposition.
|
||||
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||||
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
|
||||
{
|
||||
let (nrows, ncols) = self.qr.data.shape();
|
||||
|
||||
// NOTE: we could build the identity matrix and call q_mul on it.
|
||||
|
@ -139,7 +147,9 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
|||
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
|
||||
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||||
// FIXME: do we need a static constraint on the number of rows of rhs?
|
||||
where S2: StorageMut<N, R2, C2> {
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
{
|
||||
let dim = self.diag.len();
|
||||
|
||||
for i in 0..dim {
|
||||
|
@ -153,7 +163,8 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> QR<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
///
|
||||
|
@ -285,7 +296,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|||
}
|
||||
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>,
|
||||
{
|
||||
/// Computes the QR decomposition of this matrix.
|
||||
pub fn qr(self) -> QR<N, R, C> {
|
||||
|
|
|
@ -32,7 +32,8 @@ use crate::linalg::Hessenberg;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Schur<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
q: MatrixN<N, D>,
|
||||
t: MatrixN<N, D>,
|
||||
|
@ -84,8 +85,7 @@ where
|
|||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
compute_q: bool,
|
||||
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
|
||||
{
|
||||
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)> {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"Unable to compute the eigenvectors and eigenvalues of a non-square matrix."
|
||||
|
|
|
@ -41,9 +41,10 @@ use crate::linalg::Bidiagonal;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SVD<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<N::RealField, DimMinimum<R, C>>,
|
||||
{
|
||||
/// The left-singular vectors `U` of this SVD.
|
||||
pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>,
|
||||
|
@ -105,8 +106,7 @@ where
|
|||
compute_v: bool,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<Self>
|
||||
{
|
||||
) -> Option<Self> {
|
||||
assert!(
|
||||
matrix.len() != 0,
|
||||
"Cannot compute the SVD of an empty matrix."
|
||||
|
@ -333,8 +333,7 @@ where
|
|||
is_upper_diagonal: bool,
|
||||
end: usize,
|
||||
eps: N::RealField,
|
||||
) -> (usize, usize)
|
||||
{
|
||||
) -> (usize, usize) {
|
||||
let mut n = end;
|
||||
|
||||
while n > 0 {
|
||||
|
@ -437,8 +436,7 @@ where
|
|||
is_upper_diagonal: bool,
|
||||
i: usize,
|
||||
end: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let mut v = Vector2::new(off_diagonal[i], diagonal[i + 1]);
|
||||
off_diagonal[i] = N::RealField::zero();
|
||||
|
||||
|
@ -475,8 +473,7 @@ where
|
|||
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
|
||||
is_upper_diagonal: bool,
|
||||
i: usize,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let mut v = Vector2::new(diagonal[i], off_diagonal[i]);
|
||||
off_diagonal[i] = N::RealField::zero();
|
||||
|
||||
|
@ -541,7 +538,9 @@ where
|
|||
/// Returns `Err` if the right- and left- singular vectors have not
|
||||
/// been computed at construction-time.
|
||||
pub fn pseudo_inverse(mut self, eps: N::RealField) -> Result<MatrixMN<N, C, R>, &'static str>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
if eps < N::RealField::zero() {
|
||||
Err("SVD pseudo inverse: the epsilon must be non-negative.")
|
||||
} else {
|
||||
|
@ -638,8 +637,7 @@ where
|
|||
compute_v: bool,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SVD<N, R, C>>
|
||||
{
|
||||
) -> Option<SVD<N, R, C>> {
|
||||
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||
}
|
||||
|
||||
|
@ -660,7 +658,9 @@ where
|
|||
///
|
||||
/// All singular values below `eps` are considered equal to 0.
|
||||
pub fn pseudo_inverse(self, eps: N::RealField) -> Result<MatrixMN<N, C, R>, &'static str>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N, C, R>,
|
||||
{
|
||||
SVD::new(self.clone_owned(), true, true).pseudo_inverse(eps)
|
||||
}
|
||||
}
|
||||
|
@ -678,8 +678,7 @@ fn compute_2x2_uptrig_svd<N: RealField>(
|
|||
Option<GivensRotation<N>>,
|
||||
Vector2<N>,
|
||||
Option<GivensRotation<N>>,
|
||||
)
|
||||
{
|
||||
) {
|
||||
let two: N::RealField = crate::convert(2.0f64);
|
||||
let half: N::RealField = crate::convert(0.5f64);
|
||||
|
||||
|
|
|
@ -31,7 +31,8 @@ use crate::linalg::SymmetricTridiagonal;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricEigen<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
|
||||
{
|
||||
/// The eigenvectors of the decomposed matrix.
|
||||
pub eigenvectors: MatrixN<N, D>,
|
||||
|
@ -49,7 +50,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> SymmetricEigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N::RealField, D>,
|
||||
{
|
||||
/// Computes the eigendecomposition of the given symmetric matrix.
|
||||
///
|
||||
|
@ -300,10 +302,11 @@ pub fn wilkinson_shift<N: ComplexField>(tmm: N, tnn: N, tmn: N) -> N {
|
|||
*
|
||||
*/
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>
|
||||
+ Allocator<N, DimDiff<D, U1>>
|
||||
+ Allocator<N::RealField, D>
|
||||
+ Allocator<N::RealField, DimDiff<D, U1>>
|
||||
+ Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the eigendecomposition of this symmetric matrix.
|
||||
///
|
||||
|
@ -327,8 +330,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
|||
self,
|
||||
eps: N::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<SymmetricEigen<N, D>>
|
||||
{
|
||||
) -> Option<SymmetricEigen<N, D>> {
|
||||
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
|
||||
}
|
||||
|
||||
|
|
|
@ -27,7 +27,8 @@ use crate::linalg::householder;
|
|||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricTridiagonal<N: ComplexField, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
tri: MatrixN<N, D>,
|
||||
off_diagonal: VectorN<N, DimDiff<D, U1>>,
|
||||
|
@ -42,7 +43,8 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the tridiagonalization of the symmetric matrix `m`.
|
||||
///
|
||||
|
@ -102,7 +104,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
|||
VectorN<N::RealField, D>,
|
||||
VectorN<N::RealField, DimDiff<D, U1>>,
|
||||
)
|
||||
where DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
let diag = self.diagonal();
|
||||
let q = self.q();
|
||||
|
@ -117,20 +120,25 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
|||
VectorN<N::RealField, D>,
|
||||
VectorN<N::RealField, DimDiff<D, U1>>,
|
||||
)
|
||||
where DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
(self.diagonal(), self.off_diagonal.map(N::modulus))
|
||||
}
|
||||
|
||||
/// The diagonal components of this decomposition.
|
||||
pub fn diagonal(&self) -> VectorN<N::RealField, D>
|
||||
where DefaultAllocator: Allocator<N::RealField, D> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, D>,
|
||||
{
|
||||
self.tri.map_diagonal(|e| e.real())
|
||||
}
|
||||
|
||||
/// The off-diagonal components of this decomposition.
|
||||
pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<D, U1>>
|
||||
where DefaultAllocator: Allocator<N::RealField, DimDiff<D, U1>> {
|
||||
where
|
||||
DefaultAllocator: Allocator<N::RealField, DimDiff<D, U1>>,
|
||||
{
|
||||
self.off_diagonal.map(N::modulus)
|
||||
}
|
||||
|
||||
|
@ -156,7 +164,8 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
{
|
||||
/// Computes the tridiagonalization of this symmetric matrix.
|
||||
///
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue