Remove free-functions alliasing structures constructors.
Those constructors are not idiomatic. Use e.g. `Vec3::new(0, 0, 0)` instead.
This commit is contained in:
parent
ccbc8b4429
commit
bb5654d220
24
README.md
24
README.md
|
@ -10,9 +10,8 @@ An on-line version of this documentation is available [here](http://crozet.re/na
|
|||
|
||||
## Using **nalgebra**
|
||||
All the functionalities of **nalgebra** are grouped in one place: the `na` module.
|
||||
This module re-exports everything and includes free functions for all traits methods.
|
||||
Free functions are useful if you prefer doing something like `na::dot(v1, v2)` instead of
|
||||
`v1.dot(v2)`.
|
||||
This module re-exports everything and includes free functions for all traits methods doing
|
||||
out-of-place modifications.
|
||||
|
||||
* You can import the whole prelude, including free functions, using:
|
||||
|
||||
|
@ -31,8 +30,23 @@ use nalgebra::traits::*;
|
|||
```.rust
|
||||
use nalgebra::structs::*;
|
||||
```
|
||||
Of course, you can still import `nalgebra::na` alone, and get anything you want using the prefix
|
||||
`na`.
|
||||
The preffered way to use **nalgebra** is to import types and traits explicitly, and call
|
||||
free-functions using the `na::` prefix:
|
||||
|
||||
```.rust
|
||||
extern mod nalgebra;
|
||||
use nalgebra::na::{Vec3, Rot3, Rotation};
|
||||
use nalgebra::na;
|
||||
|
||||
fn main() {
|
||||
let a = Vec3::new(1.0f64, 1.0, 1.0);
|
||||
let mut b = Rot3::new(na::zero());
|
||||
|
||||
b.append_rotation(&a);
|
||||
|
||||
assert!(na::rotation(&b).approx_eq(&a));
|
||||
}
|
||||
```
|
||||
|
||||
## Features
|
||||
**nalgebra** is meant to be a general-purpose linear algebra library (but is very far from that…),
|
||||
|
|
|
@ -36,12 +36,12 @@ free-functions using the `na::` prefix:
|
|||
|
||||
```.rust
|
||||
extern mod nalgebra;
|
||||
use nalgebra::na::{Rot3, Rotation};
|
||||
use nalgebra::na::{Vec3, Rot3, Rotation};
|
||||
use nalgebra::na;
|
||||
|
||||
fn main() {
|
||||
let a = na::vec3(1.0f64, 1.0, 1.0);
|
||||
let mut b: Rot3<f64> = na::one();
|
||||
let a = Vec3::new(1.0f64, 1.0, 1.0);
|
||||
let mut b = Rot3::new(na::zero());
|
||||
|
||||
b.append_rotation(&a);
|
||||
|
||||
|
|
131
src/na.rs
131
src/na.rs
|
@ -77,85 +77,6 @@ pub fn one<T: One>() -> T {
|
|||
One::one()
|
||||
}
|
||||
|
||||
/// Creates a new 1d vector.
|
||||
///
|
||||
/// This is the same as `Vec1::new(x)`.
|
||||
#[inline(always)]
|
||||
pub fn vec1<N>(x: N) -> Vec1<N> {
|
||||
Vec1::new(x)
|
||||
}
|
||||
|
||||
/// Creates a new 2d vector.
|
||||
///
|
||||
/// This is the same as `Vec2::new(x, y)`.
|
||||
#[inline(always)]
|
||||
pub fn vec2<N>(x: N, y: N) -> Vec2<N> {
|
||||
Vec2::new(x, y)
|
||||
}
|
||||
|
||||
/// Creates a new 3d vector.
|
||||
///
|
||||
/// This is the same as `Vec3::new(x, y, z)`.
|
||||
#[inline(always)]
|
||||
pub fn vec3<N>(x: N, y: N, z: N) -> Vec3<N> {
|
||||
Vec3::new(x, y, z)
|
||||
}
|
||||
|
||||
/// Creates a new 4d vector.
|
||||
///
|
||||
/// This is the same as `Vec4::new(x, y, z, w)`.
|
||||
#[inline(always)]
|
||||
pub fn vec4<N>(x: N, y: N, z: N, w: N) -> Vec4<N> {
|
||||
Vec4::new(x, y, z, w)
|
||||
}
|
||||
|
||||
/// Creates a new 1d matrix.
|
||||
///
|
||||
/// This is the same as `Mat1::new(...)`.
|
||||
#[inline(always)]
|
||||
pub fn mat1<N>(m11: N) -> Mat1<N> {
|
||||
Mat1::new(m11)
|
||||
}
|
||||
|
||||
/// Creates a new 2d matrix.
|
||||
///
|
||||
/// This is the same as `Mat2::new(...)`.
|
||||
#[inline(always)]
|
||||
pub fn mat2<N>(m11: N, m12: N,
|
||||
m21: N, m22: N) -> Mat2<N> {
|
||||
Mat2::new(
|
||||
m11, m12,
|
||||
m21, m22)
|
||||
}
|
||||
|
||||
/// Creates a new 3d matrix.
|
||||
///
|
||||
/// This is the same as `Mat3::new(...)`.
|
||||
#[inline(always)]
|
||||
pub fn mat3<N>(m11: N, m12: N, m13: N,
|
||||
m21: N, m22: N, m23: N,
|
||||
m31: N, m32: N, m33: N) -> Mat3<N> {
|
||||
Mat3::new(
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33)
|
||||
}
|
||||
|
||||
/// Creates a new 4d matrix.
|
||||
///
|
||||
/// This is the same as `Mat4::new(...)`.
|
||||
#[inline(always)]
|
||||
pub fn mat4<N>(m11: N, m12: N, m13: N, m14: N,
|
||||
m21: N, m22: N, m23: N, m24: N,
|
||||
m31: N, m32: N, m33: N, m34: N,
|
||||
m41: N, m42: N, m43: N, m44: N) -> Mat4<N> {
|
||||
Mat4::new(
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44)
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// Geometry
|
||||
|
@ -170,11 +91,11 @@ pub fn mat4<N>(m11: N, m12: N, m13: N, m14: N,
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::types::{Vec3, Affmat};
|
||||
/// use nalgebra::types::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = Affmat::new_translation3d(1.0, 1.0, 1.0);
|
||||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||||
/// let trans = na::translation(t);
|
||||
///
|
||||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||||
|
@ -189,11 +110,11 @@ pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::types::{Vec3, Affmat};
|
||||
/// use nalgebra::types::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = Affmat::new_translation3d(1.0, 1.0, 1.0);
|
||||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||||
/// let itrans = na::inv_translation(t);
|
||||
///
|
||||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||||
|
@ -218,15 +139,16 @@ pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::translation3d(1.0, 1.0, 1.0);
|
||||
/// let v = na::vec3(2.0, 2.0, 2.0);
|
||||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::translate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == na::vec3(3.0, 3.0, 3.0))
|
||||
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
@ -238,15 +160,16 @@ pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::translation3d(1.0, 1.0, 1.0);
|
||||
/// let v = na::vec3(2.0, 2.0, 2.0);
|
||||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::translate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == na::vec3(1.0, 1.0, 1.0))
|
||||
/// assert!(tv == Vec3::new(1.0, 1.0, 1.0))
|
||||
/// }
|
||||
#[inline(always)]
|
||||
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||||
|
@ -261,12 +184,13 @@ pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::rot3(1.0, 1.0, 1.0);
|
||||
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::rotation(t) == na::vec3(1.0, 1.0, 1.0));
|
||||
/// assert!(na::rotation(t) == Vec3::new(1.0, 1.0, 1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
@ -279,12 +203,13 @@ pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::rot3(1.0, 1.0, 1.0);
|
||||
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::inv_rotation(t) == na::vec3(-1.0, -1.0, -1.0));
|
||||
/// assert!(na::inv_rotation(t) == Vec3::new(-1.0, -1.0, -1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
@ -296,14 +221,15 @@ pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::rot3(0.0, 0.0, 0.0);
|
||||
/// let v = na::vec3(1.0, 1.0, 1.0);
|
||||
/// let t = Rot3::new(Vec3::new(0.0, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::append_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::rotation(&rt) == na::vec3(1.0, 1.0, 1.0))
|
||||
/// assert!(na::rotation(&rt) == Vec3::new(1.0, 1.0, 1.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
@ -319,15 +245,16 @@ pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
|||
///
|
||||
/// ```rust
|
||||
/// extern mod nalgebra;
|
||||
/// use nalgebra::na::{Rot3, Vec3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::rot3(1.0, 0.0, 0.0);
|
||||
/// let v = na::vec3(0.0, 0.0, na::pi() / 2.0);
|
||||
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
|
||||
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
|
||||
///
|
||||
/// let tv = na::rotate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == na::vec3(0.0, 1.0, 0.0))
|
||||
/// assert!(tv == Vec3::new(0.0, 1.0, 0.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
@ -343,12 +270,12 @@ pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
|||
/// use nalgebra::na;
|
||||
///
|
||||
/// pub main() {
|
||||
/// let t = na::rot3(na::vec3(1.0, 0.0, 0.0));
|
||||
/// let v = na::vec3(0.0, 0.0, na::pi() / 2.0);
|
||||
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
|
||||
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
|
||||
///
|
||||
/// let tv = na::rotate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == na::vec3(0.0, -1.0, 0.0))
|
||||
/// assert!(tv == Vec3::new(0.0, -1.0, 0.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
|
|
|
@ -4,13 +4,13 @@
|
|||
|
||||
use std::num::{Zero, One};
|
||||
use std::rand::{Rand, Rng};
|
||||
use structs::mat::{Mat3, Mat4, Mat5};
|
||||
use structs::mat::{Mat3, Mat4};
|
||||
use traits::structure::{Cast, Dim, Col};
|
||||
use traits::operations::{Inv};
|
||||
use traits::geometry::{RotationMatrix, Rotation, Rotate, AbsoluteRotate, Transform, Transformation,
|
||||
Translate, Translation, ToHomogeneous};
|
||||
|
||||
use structs::vec::{Vec1, Vec2, Vec3, Vec4, Vec2MulRhs, Vec3MulRhs, Vec4MulRhs};
|
||||
use structs::vec::{Vec1, Vec2, Vec3, Vec4, Vec2MulRhs, Vec3MulRhs};
|
||||
use structs::rot::{Rot2, Rot3, Rot4};
|
||||
|
||||
mod metal;
|
||||
|
@ -82,7 +82,7 @@ impl<N: Clone + Num + Algebraic> Iso3<N> {
|
|||
}
|
||||
}
|
||||
|
||||
iso_impl!(Iso2, Rot2, Vec2)
|
||||
iso_impl!(Iso2, Rot2, Vec2, Vec1)
|
||||
double_dispatch_binop_decl_trait!(Iso2, Iso2MulRhs)
|
||||
mul_redispatch_impl!(Iso2, Iso2MulRhs)
|
||||
rotation_matrix_impl!(Iso2, Rot2, Vec2, Vec1)
|
||||
|
@ -103,7 +103,7 @@ iso_mul_iso_impl!(Iso2, Iso2MulRhs)
|
|||
iso_mul_vec_impl!(Iso2, Vec2, Iso2MulRhs)
|
||||
vec_mul_iso_impl!(Iso2, Vec2, Vec2MulRhs)
|
||||
|
||||
iso_impl!(Iso3, Rot3, Vec3)
|
||||
iso_impl!(Iso3, Rot3, Vec3, Vec3)
|
||||
double_dispatch_binop_decl_trait!(Iso3, Iso3MulRhs)
|
||||
mul_redispatch_impl!(Iso3, Iso3MulRhs)
|
||||
rotation_matrix_impl!(Iso3, Rot3, Vec3, Vec3)
|
||||
|
@ -124,7 +124,8 @@ iso_mul_iso_impl!(Iso3, Iso3MulRhs)
|
|||
iso_mul_vec_impl!(Iso3, Vec3, Iso3MulRhs)
|
||||
vec_mul_iso_impl!(Iso3, Vec3, Vec3MulRhs)
|
||||
|
||||
iso_impl!(Iso4, Rot4, Vec4)
|
||||
/*
|
||||
iso_impl!(Iso4, Rot4, Vec4, Vec4)
|
||||
double_dispatch_binop_decl_trait!(Iso4, Iso4MulRhs)
|
||||
mul_redispatch_impl!(Iso4, Iso4MulRhs)
|
||||
// rotation_matrix_impl!(Iso4, Rot4, Vec4, Vec4)
|
||||
|
@ -144,3 +145,4 @@ translate_impl!(Iso4, Vec4)
|
|||
iso_mul_iso_impl!(Iso4, Iso4MulRhs)
|
||||
iso_mul_vec_impl!(Iso4, Vec4, Iso4MulRhs)
|
||||
vec_mul_iso_impl!(Iso4, Vec4, Vec4MulRhs)
|
||||
*/
|
||||
|
|
|
@ -1,11 +1,20 @@
|
|||
#[macro_escape];
|
||||
|
||||
macro_rules! iso_impl(
|
||||
($t: ident, $submat: ident, $subvec: ident) => (
|
||||
impl<N> $t<N> {
|
||||
($t: ident, $submat: ident, $subvec: ident, $subrotvec: ident) => (
|
||||
impl<N: Clone + Trigonometric + Algebraic + Num> $t<N> {
|
||||
/// Creates a new isometry from a rotation matrix and a vector.
|
||||
#[inline]
|
||||
pub fn new(translation: $subvec<N>, rotation: $submat<N>) -> $t<N> {
|
||||
pub fn new(translation: $subvec<N>, rotation: $subrotvec<N>) -> $t<N> {
|
||||
$t {
|
||||
rotation: $submat::new(rotation),
|
||||
translation: translation
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new isometry from a rotation matrix and a vector.
|
||||
#[inline]
|
||||
pub fn new_with_rotmat(translation: $subvec<N>, rotation: $submat<N>) -> $t<N> {
|
||||
$t {
|
||||
rotation: rotation,
|
||||
translation: translation
|
||||
|
@ -41,10 +50,10 @@ macro_rules! dim_impl(
|
|||
|
||||
macro_rules! one_impl(
|
||||
($t: ident) => (
|
||||
impl<N: One + Zero + Clone> One for $t<N> {
|
||||
impl<N: Trigonometric + Algebraic + Num + Clone> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t::new(Zero::zero(), One::one())
|
||||
$t::new_with_rotmat(Zero::zero(), One::one())
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -52,10 +61,12 @@ macro_rules! one_impl(
|
|||
|
||||
macro_rules! iso_mul_iso_impl(
|
||||
($t: ident, $tmul: ident) => (
|
||||
impl<N: Num + Clone> $tmul<N, $t<N>> for $t<N> {
|
||||
impl<N: Num + Trigonometric + Algebraic + Clone> $tmul<N, $t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn binop(left: &$t<N>, right: &$t<N>) -> $t<N> {
|
||||
$t::new(left.translation + left.rotation * right.translation, left.rotation * right.rotation)
|
||||
$t::new_with_rotmat(
|
||||
left.translation + left.rotation * right.translation,
|
||||
left.rotation * right.rotation)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -85,7 +96,7 @@ macro_rules! vec_mul_iso_impl(
|
|||
|
||||
macro_rules! translation_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: Neg<N> + Add<N, N> + Num + Clone> Translation<$tv<N>> for $t<N> {
|
||||
impl<N: Trigonometric + Num + Algebraic + Clone> Translation<$tv<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn translation(&self) -> $tv<N> {
|
||||
self.translation.clone()
|
||||
|
@ -103,7 +114,7 @@ macro_rules! translation_impl(
|
|||
|
||||
#[inline]
|
||||
fn append_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
|
||||
$t::new(*t + iso.translation, iso.rotation.clone())
|
||||
$t::new_with_rotmat(*t + iso.translation, iso.rotation.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -113,7 +124,7 @@ macro_rules! translation_impl(
|
|||
|
||||
#[inline]
|
||||
fn prepend_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
|
||||
$t::new(iso.translation + iso.rotation * *t, iso.rotation.clone())
|
||||
$t::new_with_rotmat(iso.translation + iso.rotation * *t, iso.rotation.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -165,7 +176,7 @@ macro_rules! rotation_impl(
|
|||
fn append_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
|
||||
let delta = $trot::new(rot.clone());
|
||||
|
||||
$t::new(delta * t.translation, delta * t.rotation)
|
||||
$t::new_with_rotmat(delta * t.translation, delta * t.rotation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -179,7 +190,7 @@ macro_rules! rotation_impl(
|
|||
fn prepend_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
|
||||
let delta = $trot::new(rot.clone());
|
||||
|
||||
$t::new(t.translation.clone(), t.rotation * delta)
|
||||
$t::new_with_rotmat(t.translation.clone(), t.rotation * delta)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -209,7 +220,7 @@ macro_rules! rotate_impl(
|
|||
|
||||
macro_rules! transformation_impl(
|
||||
($t: ident) => (
|
||||
impl<N: Num + Clone> Transformation<$t<N>> for $t<N> {
|
||||
impl<N: Num + Trigonometric + Algebraic + Clone> Transformation<$t<N>> for $t<N> {
|
||||
fn transformation(&self) -> $t<N> {
|
||||
self.clone()
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
use std::num::{Real, abs};
|
||||
use std::rand::random;
|
||||
use std::cmp::ApproxEq;
|
||||
use na::{DMat, DVec};
|
||||
use na::{Vec1, DMat, DVec};
|
||||
use na::Indexable; // FIXME: get rid of that
|
||||
use na;
|
||||
|
||||
|
@ -89,7 +89,7 @@ fn test_inv_mat6() {
|
|||
fn test_rotation2() {
|
||||
do 10000.times {
|
||||
let randmat: na::Rot2<f64> = na::one();
|
||||
let ang = na::vec1(abs::<f64>(random()) % Real::pi());
|
||||
let ang = Vec1::new(abs::<f64>(random()) % Real::pi());
|
||||
|
||||
assert!(na::rotation(&na::append_rotation(&randmat, &ang)).approx_eq(&ang));
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
use std::rand::{random};
|
||||
use std::cmp::ApproxEq;
|
||||
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||
use na::{Iterable, IterableMut}; // FIXME: get rid of that
|
||||
use na::{Mat3, Iterable, IterableMut}; // FIXME: get rid of that
|
||||
use na;
|
||||
|
||||
macro_rules! test_iterator_impl(
|
||||
|
@ -288,35 +288,35 @@ fn test_iterator_vec6() {
|
|||
#[test]
|
||||
fn test_ord_vec3() {
|
||||
// equality
|
||||
assert!(na::vec3(0.5, 0.5, 0.5) == na::vec3(0.5, 0.5, 0.5));
|
||||
assert!(!(na::vec3(1.5, 0.5, 0.5) == na::vec3(0.5, 0.5, 0.5)));
|
||||
assert!(na::vec3(1.5, 0.5, 0.5) != na::vec3(0.5, 0.5, 0.5));
|
||||
assert!(Vec3::new(0.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5));
|
||||
assert!(!(Vec3::new(1.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5)));
|
||||
assert!(Vec3::new(1.5, 0.5, 0.5) != Vec3::new(0.5, 0.5, 0.5));
|
||||
|
||||
// comparable
|
||||
assert!(na::vec3(0.5, 0.3, 0.3) < na::vec3(1.0, 2.0, 1.0));
|
||||
assert!(na::vec3(0.5, 0.3, 0.3) <= na::vec3(1.0, 2.0, 1.0));
|
||||
assert!(na::vec3(2.0, 4.0, 2.0) > na::vec3(1.0, 2.0, 1.0));
|
||||
assert!(na::vec3(2.0, 4.0, 2.0) >= na::vec3(1.0, 2.0, 1.0));
|
||||
assert!(Vec3::new(0.5, 0.3, 0.3) < Vec3::new(1.0, 2.0, 1.0));
|
||||
assert!(Vec3::new(0.5, 0.3, 0.3) <= Vec3::new(1.0, 2.0, 1.0));
|
||||
assert!(Vec3::new(2.0, 4.0, 2.0) > Vec3::new(1.0, 2.0, 1.0));
|
||||
assert!(Vec3::new(2.0, 4.0, 2.0) >= Vec3::new(1.0, 2.0, 1.0));
|
||||
|
||||
// not comparable
|
||||
assert!(!(na::vec3(0.0, 3.0, 0.0) < na::vec3(1.0, 2.0, 1.0)));
|
||||
assert!(!(na::vec3(0.0, 3.0, 0.0) > na::vec3(1.0, 2.0, 1.0)));
|
||||
assert!(!(na::vec3(0.0, 3.0, 0.0) <= na::vec3(1.0, 2.0, 1.0)));
|
||||
assert!(!(na::vec3(0.0, 3.0, 0.0) >= na::vec3(1.0, 2.0, 1.0)));
|
||||
assert!(!(Vec3::new(0.0, 3.0, 0.0) < Vec3::new(1.0, 2.0, 1.0)));
|
||||
assert!(!(Vec3::new(0.0, 3.0, 0.0) > Vec3::new(1.0, 2.0, 1.0)));
|
||||
assert!(!(Vec3::new(0.0, 3.0, 0.0) <= Vec3::new(1.0, 2.0, 1.0)));
|
||||
assert!(!(Vec3::new(0.0, 3.0, 0.0) >= Vec3::new(1.0, 2.0, 1.0)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_min_max_vec3() {
|
||||
assert_eq!(na::vec3(1, 2, 3).max(&na::vec3(3, 2, 1)), na::vec3(3, 2, 3));
|
||||
assert_eq!(na::vec3(1, 2, 3).min(&na::vec3(3, 2, 1)), na::vec3(1, 2, 1));
|
||||
assert_eq!(na::vec3(0, 2, 4).clamp(&na::vec3(1, 1, 1), &na::vec3(3, 3, 3)), na::vec3(1, 2, 3));
|
||||
assert_eq!(Vec3::new(1, 2, 3).max(&Vec3::new(3, 2, 1)), Vec3::new(3, 2, 3));
|
||||
assert_eq!(Vec3::new(1, 2, 3).min(&Vec3::new(3, 2, 1)), Vec3::new(1, 2, 1));
|
||||
assert_eq!(Vec3::new(0, 2, 4).clamp(&Vec3::new(1, 1, 1), &Vec3::new(3, 3, 3)), Vec3::new(1, 2, 3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_outer_vec3() {
|
||||
assert_eq!(
|
||||
na::outer(&na::vec3(1, 2, 3), &na::vec3(4, 5, 6)),
|
||||
na::mat3(
|
||||
na::outer(&Vec3::new(1, 2, 3), &Vec3::new(4, 5, 6)),
|
||||
Mat3::new(
|
||||
4, 5, 6,
|
||||
8, 10, 12,
|
||||
12, 15, 18));
|
||||
|
|
Loading…
Reference in New Issue