added tests for complex and quaternion slerp pathing
This commit is contained in:
parent
b02e4ec2a9
commit
baa320d7f3
|
@ -33,7 +33,9 @@ fn quaternion_euler_angles_issue_494() {
|
|||
#[cfg(feature = "proptest-support")]
|
||||
mod proptest_tests {
|
||||
use na::{self, Rotation2, Rotation3, Unit};
|
||||
use na::{UnitComplex, UnitQuaternion};
|
||||
use simba::scalar::RealField;
|
||||
use approx::AbsDiffEq;
|
||||
use std::f64;
|
||||
|
||||
use crate::proptest::*;
|
||||
|
@ -229,5 +231,74 @@ mod proptest_tests {
|
|||
prop_assert_eq!(r, Rotation3::identity())
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
//In general, `slerp(a,b,t)` should equal `(b/a)^t * a` even though in practice,
|
||||
//we may not use that formula directly for complex numbers or quaternions
|
||||
//
|
||||
|
||||
#[test]
|
||||
fn slerp_powf_agree_2(a in unit_complex(), b in unit_complex(), t in PROPTEST_F64) {
|
||||
let z1 = a.slerp(&b, t);
|
||||
let z2 = (b/a).powf(t) * a;
|
||||
prop_assert!(relative_eq!(z1,z2,epsilon=1e-10));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn slerp_powf_agree_3(a in unit_quaternion(), b in unit_quaternion(), t in PROPTEST_F64) {
|
||||
if let Some(z1) = a.try_slerp(&b, t, f64::default_epsilon()) {
|
||||
let z2 = (b/a).powf(t) * a;
|
||||
prop_assert!(relative_eq!(z1,z2,epsilon=1e-10));
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
//when not antipodal, slerp should always take the shortest path between two orientations
|
||||
//
|
||||
|
||||
#[test]
|
||||
fn slerp_takes_shortest_path_2(
|
||||
z in unit_complex(), dtheta in -f64::pi()..f64::pi(), t in 0.0..1.0f64
|
||||
) {
|
||||
|
||||
//ambiguous when at ends of angle range, so we don't really care here
|
||||
if dtheta.abs() != f64::pi() {
|
||||
|
||||
//make two complex numbers separated by an angle between -pi and pi
|
||||
let (z1, z2) = (z, z * UnitComplex::new(dtheta));
|
||||
let z3 = z1.slerp(&z2, t);
|
||||
|
||||
//since the angle is no larger than a half-turn, and t is between 0 and 1,
|
||||
//the shortest path just corresponds to adding the scaled angle
|
||||
let a1 = z3.angle();
|
||||
let a2 = na::wrap(z1.angle() + dtheta*t, -f64::pi(), f64::pi());
|
||||
|
||||
prop_assert!(relative_eq!(a1, a2, epsilon=1e-10));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn slerp_takes_shortest_path_3(
|
||||
q in unit_quaternion(), dtheta in -f64::pi()..f64::pi(), t in 0.0..1.0f64
|
||||
) {
|
||||
|
||||
//ambiguous when at ends of angle range, so we don't really care here
|
||||
if let Some(axis) = q.axis() {
|
||||
|
||||
//make two quaternions separated by an angle between -pi and pi
|
||||
let (q1, q2) = (q, q * UnitQuaternion::from_axis_angle(&axis, dtheta));
|
||||
let q3 = q1.slerp(&q2, t);
|
||||
|
||||
//since the angle is no larger than a half-turn, and t is between 0 and 1,
|
||||
//the shortest path just corresponds to adding the scaled angle
|
||||
let q4 = q1 * UnitQuaternion::from_axis_angle(&axis, dtheta*t);
|
||||
prop_assert!(relative_eq!(q3, q4, epsilon=1e-10));
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue