Deprecate `na::`, move all reexport to the root crate.
This also moves the tests and benches to cargo-complient folders. Fix #21.
This commit is contained in:
parent
8f89ac421c
commit
ba18f5aa70
3
Makefile
3
Makefile
|
@ -7,8 +7,7 @@ test:
|
|||
cargo test
|
||||
|
||||
bench:
|
||||
rustc --test src/lib.rs --opt-level 3 -o bench~ && ./bench~ --bench
|
||||
rm bench~
|
||||
cargo bench
|
||||
|
||||
doc:
|
||||
cargo doc
|
||||
|
|
|
@ -1,3 +1,9 @@
|
|||
#![feature(macro_rules)]
|
||||
|
||||
extern crate debug;
|
||||
extern crate test;
|
||||
extern crate "nalgebra" as na;
|
||||
|
||||
use std::rand::random;
|
||||
use test::Bencher;
|
||||
use na::{Vec2, Vec3, Vec4, Vec5, Vec6, DVec, Mat2, Mat3, Mat4, Mat5, Mat6, DMat};
|
|
@ -1,7 +1,12 @@
|
|||
#![feature(macro_rules)]
|
||||
|
||||
extern crate debug;
|
||||
extern crate test;
|
||||
extern crate "nalgebra" as na;
|
||||
|
||||
use std::rand::random;
|
||||
use test::Bencher;
|
||||
use na::{Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||
use na;
|
||||
|
||||
macro_rules! bench_dot_vec(
|
||||
($bh: expr, $t: ty) => {
|
828
src/lib.rs
828
src/lib.rs
|
@ -10,23 +10,22 @@
|
|||
An on-line version of this documentation is available [here](http://nalgebra.org).
|
||||
|
||||
## Using **nalgebra**
|
||||
All the functionalities of **nalgebra** are grouped in one place: the `na` module.
|
||||
All the functionalities of **nalgebra** are grouped in one place: the root `nalgebra::` module.
|
||||
This module re-exports everything and includes free functions for all traits methods doing
|
||||
out-of-place modifications.
|
||||
|
||||
* You can import the whole prelude using:
|
||||
|
||||
```.ignore
|
||||
use nalgebra::na::*;
|
||||
use nalgebra::*;
|
||||
```
|
||||
|
||||
The preferred way to use **nalgebra** is to import types and traits explicitly, and call
|
||||
free-functions using the `na::` prefix:
|
||||
|
||||
```.rust
|
||||
extern crate nalgebra;
|
||||
use nalgebra::na::{Vec3, Rot3, Rotation};
|
||||
use nalgebra::na;
|
||||
extern crate "nalgebra" as na;
|
||||
use na::{Vec3, Rot3, Rotation};
|
||||
|
||||
fn main() {
|
||||
let a = Vec3::new(1.0f64, 1.0, 1.0);
|
||||
|
@ -55,9 +54,8 @@ and keeps an optimized set of tools for computational graphics and physics. Thos
|
|||
For example, the following works:
|
||||
|
||||
```rust
|
||||
extern crate nalgebra;
|
||||
use nalgebra::na::{Vec3, Mat3};
|
||||
use nalgebra::na;
|
||||
extern crate "nalgebra" as na;
|
||||
use na::{Vec3, Mat3};
|
||||
|
||||
fn main() {
|
||||
let v: Vec3<f64> = na::zero();
|
||||
|
@ -99,6 +97,7 @@ Feel free to add your project to this list if you happen to use **nalgebra**!
|
|||
#![deny(unused_result)]
|
||||
#![warn(missing_doc)]
|
||||
#![feature(macro_rules)]
|
||||
#![feature(globs)]
|
||||
#![doc(html_root_url = "http://nalgebra.org/doc")]
|
||||
|
||||
extern crate rand;
|
||||
|
@ -109,6 +108,71 @@ extern crate test;
|
|||
#[cfg(test)]
|
||||
extern crate debug;
|
||||
|
||||
use std::num::{Zero, One, FloatMath};
|
||||
use std::cmp;
|
||||
pub use traits::{PartialLess, PartialEqual, PartialGreater, NotComparable};
|
||||
pub use traits::{
|
||||
Absolute,
|
||||
AbsoluteRotate,
|
||||
AnyVec,
|
||||
ApproxEq,
|
||||
Basis,
|
||||
Cast,
|
||||
Col,
|
||||
ColSlice, RowSlice,
|
||||
Cov,
|
||||
Cross,
|
||||
CrossMatrix,
|
||||
Det,
|
||||
Diag,
|
||||
Dim,
|
||||
Dot,
|
||||
Eye,
|
||||
FloatVec,
|
||||
FloatVecExt,
|
||||
FromHomogeneous,
|
||||
Indexable,
|
||||
Inv,
|
||||
Iterable,
|
||||
IterableMut,
|
||||
LMul,
|
||||
Mat,
|
||||
Mean,
|
||||
Norm,
|
||||
Outer,
|
||||
PartialOrd,
|
||||
PartialOrdering,
|
||||
RMul,
|
||||
Rotate, Rotation, RotationMatrix, RotationWithTranslation,
|
||||
Row,
|
||||
ScalarAdd, ScalarSub,
|
||||
ScalarMul, ScalarDiv,
|
||||
ToHomogeneous,
|
||||
Transform, Transformation,
|
||||
Translate, Translation,
|
||||
Transpose,
|
||||
UniformSphereSample,
|
||||
VecExt
|
||||
};
|
||||
|
||||
pub use structs::{
|
||||
Identity,
|
||||
DMat,
|
||||
DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6,
|
||||
Iso2, Iso3, Iso4,
|
||||
Mat1, Mat2, Mat3, Mat4,
|
||||
Mat5, Mat6,
|
||||
Rot2, Rot3, Rot4,
|
||||
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6
|
||||
};
|
||||
|
||||
pub use linalg::{
|
||||
qr,
|
||||
eigen_qr,
|
||||
householder_matrix
|
||||
};
|
||||
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub mod na;
|
||||
mod structs;
|
||||
mod traits;
|
||||
|
@ -117,14 +181,746 @@ mod linalg;
|
|||
// mod lower_triangular;
|
||||
// mod chol;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
mod vec;
|
||||
mod mat;
|
||||
/*
|
||||
* Reexport everything.
|
||||
*/
|
||||
/// Traits to work around the language limitations related to operator overloading.
|
||||
///
|
||||
/// The trait names are formed by:
|
||||
///
|
||||
/// * a type name (eg. Vec1, Vec2, Mat3, Mat4, etc.).
|
||||
/// * the name of a binary operation (eg. Mul, Div, Add, Sub, etc.).
|
||||
/// * the word `Rhs`.
|
||||
///
|
||||
/// When implemented by the type `T`, the trait makes it possible to overload the binary operator
|
||||
/// between `T` and the type name given by the trait.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// * `Vec3MulRhs` will allow the overload of the `*` operator between the implementor type and
|
||||
/// `Vec3`. The `Vec3` being the first argument of the multiplication.
|
||||
/// * `Mat4DivRhs` will allow the overload of the `/` operator between the implementor type and
|
||||
/// `Mat4`. The `Mat4` being the first argument of the division.
|
||||
pub mod overload {
|
||||
pub use structs::{Vec1MulRhs, Vec2MulRhs, Vec3MulRhs, Vec4MulRhs, Vec5MulRhs, Vec6MulRhs,
|
||||
Vec1DivRhs, Vec2DivRhs, Vec3DivRhs, Vec4DivRhs, Vec5DivRhs, Vec6DivRhs,
|
||||
Vec1AddRhs, Vec2AddRhs, Vec3AddRhs, Vec4AddRhs, Vec5AddRhs, Vec6AddRhs,
|
||||
Vec1SubRhs, Vec2SubRhs, Vec3SubRhs, Vec4SubRhs, Vec5SubRhs, Vec6SubRhs,
|
||||
Mat1MulRhs, Mat2MulRhs, Mat3MulRhs, Mat4MulRhs, Mat5MulRhs, Mat6MulRhs,
|
||||
Mat1DivRhs, Mat2DivRhs, Mat3DivRhs, Mat4DivRhs, Mat5DivRhs, Mat6DivRhs,
|
||||
Mat1AddRhs, Mat2AddRhs, Mat3AddRhs, Mat4AddRhs, Mat5AddRhs, Mat6AddRhs,
|
||||
Mat1SubRhs, Mat2SubRhs, Mat3SubRhs, Mat4SubRhs, Mat5SubRhs, Mat6SubRhs};
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod bench {
|
||||
mod vec;
|
||||
mod mat;
|
||||
/// Change the input value to ensure it is on the range `[min, max]`.
|
||||
#[inline(always)]
|
||||
pub fn clamp<T: cmp::PartialOrd>(val: T, min: T, max: T) -> T {
|
||||
if val > min {
|
||||
if val < max {
|
||||
val
|
||||
}
|
||||
else {
|
||||
max
|
||||
}
|
||||
}
|
||||
else {
|
||||
min
|
||||
}
|
||||
}
|
||||
|
||||
/// Same as `cmp::max`.
|
||||
#[inline(always)]
|
||||
pub fn max<T: Ord>(a: T, b: T) -> T {
|
||||
cmp::max(a, b)
|
||||
}
|
||||
|
||||
/// Same as `cmp::min`.
|
||||
#[inline(always)]
|
||||
pub fn min<T: Ord>(a: T, b: T) -> T {
|
||||
cmp::min(a, b)
|
||||
}
|
||||
|
||||
/// Returns the infimum of `a` and `b`.
|
||||
#[inline(always)]
|
||||
pub fn inf<T: PartialOrd>(a: &T, b: &T) -> T {
|
||||
PartialOrd::inf(a, b)
|
||||
}
|
||||
|
||||
/// Returns the supremum of `a` and `b`.
|
||||
#[inline(always)]
|
||||
pub fn sup<T: PartialOrd>(a: &T, b: &T) -> T {
|
||||
PartialOrd::sup(a, b)
|
||||
}
|
||||
|
||||
/// Compare `a` and `b` using a partial ordering relation.
|
||||
#[inline(always)]
|
||||
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> PartialOrdering {
|
||||
PartialOrd::partial_cmp(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||||
#[inline(always)]
|
||||
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_lt(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||||
#[inline(always)]
|
||||
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_le(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||||
#[inline(always)]
|
||||
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_gt(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||||
#[inline(always)]
|
||||
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_ge(a, b)
|
||||
}
|
||||
|
||||
/// Return the minimum of `a` and `b` if they are comparable.
|
||||
#[inline(always)]
|
||||
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_min(a, b)
|
||||
}
|
||||
|
||||
/// Return the maximum of `a` and `b` if they are comparable.
|
||||
#[inline(always)]
|
||||
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_max(a, b)
|
||||
}
|
||||
|
||||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||||
/// `min` or `max`.
|
||||
#[inline(always)]
|
||||
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_clamp(value, min, max)
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// Constructors
|
||||
//
|
||||
//
|
||||
|
||||
/// Create a special identity object.
|
||||
///
|
||||
/// Same as `Identity::new()`.
|
||||
#[inline(always)]
|
||||
pub fn identity() -> Identity {
|
||||
Identity::new()
|
||||
}
|
||||
|
||||
/// Create a zero-valued value.
|
||||
///
|
||||
/// This is the same as `std::num::zero()`.
|
||||
#[inline(always)]
|
||||
pub fn zero<T: Zero>() -> T {
|
||||
Zero::zero()
|
||||
}
|
||||
|
||||
/// Create a one-valued value.
|
||||
///
|
||||
/// This is the same as `std::num::one()`.
|
||||
#[inline(always)]
|
||||
pub fn one<T: One>() -> T {
|
||||
One::one()
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// Geometry
|
||||
//
|
||||
//
|
||||
|
||||
/*
|
||||
* Perspective
|
||||
*/
|
||||
/// Computes a projection matrix given the frustrum near plane width, height, the field of
|
||||
/// view, and the distance to the clipping planes (`znear` and `zfar`).
|
||||
pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
|
||||
let aspect = width / height;
|
||||
|
||||
let _1: N = one();
|
||||
let sy = _1 / (fov * cast(0.5)).tan();
|
||||
let sx = -sy / aspect;
|
||||
let sz = -(zfar + znear) / (znear - zfar);
|
||||
let tz = zfar * znear * cast(2.0) / (znear - zfar);
|
||||
|
||||
Mat4::new(
|
||||
sx, zero(), zero(), zero(),
|
||||
zero(), sy, zero(), zero(),
|
||||
zero(), zero(), sz, tz,
|
||||
zero(), zero(), one(), zero())
|
||||
}
|
||||
|
||||
/*
|
||||
* Translation<V>
|
||||
*/
|
||||
|
||||
/// Gets the translation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Iso3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let trans = na::translation(&t);
|
||||
///
|
||||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
||||
m.translation()
|
||||
}
|
||||
|
||||
/// Gets the inverse translation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Iso3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let itrans = na::inv_translation(&t);
|
||||
///
|
||||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
|
||||
m.inv_translation()
|
||||
}
|
||||
|
||||
/// Applies the translation `v` to a copy of `m`.
|
||||
#[inline(always)]
|
||||
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
||||
Translation::append_translation_cpy(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Translate<V>
|
||||
*/
|
||||
|
||||
/// Applies a translation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Iso3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::translate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||||
m.translate(v)
|
||||
}
|
||||
|
||||
/// Applies an inverse translation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Iso3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::inv_translate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
#[inline(always)]
|
||||
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_translate(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Rotation<V>
|
||||
*/
|
||||
|
||||
/// Gets the rotation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Rot3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||||
m.rotation()
|
||||
}
|
||||
|
||||
|
||||
/// Gets the inverse rotation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Rot3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||||
m.inv_rotation()
|
||||
}
|
||||
|
||||
// FIXME: this example is a bit shity
|
||||
/// Applies the rotation `v` to a copy of `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Rot3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::append_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||||
Rotation::append_rotation_cpy(m, v)
|
||||
}
|
||||
|
||||
// FIXME: this example is a bit shity
|
||||
/// Pre-applies the rotation `v` to a copy of `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use na::{Vec3, Rot3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::prepend_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||||
Rotation::prepend_rotation_cpy(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Rotate<V>
|
||||
*/
|
||||
|
||||
/// Applies a rotation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use std::num::Float;
|
||||
/// use na::{Rot3, Vec3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||||
///
|
||||
/// let tv = na::rotate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||||
m.rotate(v)
|
||||
}
|
||||
|
||||
|
||||
/// Applies an inverse rotation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate "nalgebra" as na;
|
||||
/// use std::num::Float;
|
||||
/// use na::{Rot3, Vec3};
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||||
///
|
||||
/// let tv = na::inv_rotate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_rotate(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* RotationWithTranslation<LV, AV>
|
||||
*/
|
||||
|
||||
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
|
||||
#[inline(always)]
|
||||
pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV,
|
||||
center: &LV) -> M {
|
||||
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
|
||||
}
|
||||
|
||||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||||
#[inline(always)]
|
||||
pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV) -> M {
|
||||
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
|
||||
}
|
||||
|
||||
/*
|
||||
* RotationMatrix<LV, AV, R>
|
||||
*/
|
||||
|
||||
/// Builds a rotation matrix from `r`.
|
||||
#[inline(always)]
|
||||
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
|
||||
r.to_rot_mat()
|
||||
}
|
||||
|
||||
/*
|
||||
* AbsoluteRotate<V>
|
||||
*/
|
||||
|
||||
/// Applies a rotation using the absolute values of its components.
|
||||
#[inline(always)]
|
||||
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
||||
m.absolute_rotate(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Transformation<T>
|
||||
*/
|
||||
|
||||
/// Gets the transformation applicable by `m`.
|
||||
#[inline(always)]
|
||||
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||||
m.transformation()
|
||||
}
|
||||
|
||||
/// Gets the inverse transformation applicable by `m`.
|
||||
#[inline(always)]
|
||||
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||||
m.inv_transformation()
|
||||
}
|
||||
|
||||
/// Gets a transformed copy of `m`.
|
||||
#[inline(always)]
|
||||
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
||||
Transformation::append_transformation_cpy(m, t)
|
||||
}
|
||||
|
||||
/*
|
||||
* Transform<V>
|
||||
*/
|
||||
|
||||
/// Applies a transformation to a vector.
|
||||
#[inline(always)]
|
||||
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||||
m.transform(v)
|
||||
}
|
||||
|
||||
/// Applies an inverse transformation to a vector.
|
||||
#[inline(always)]
|
||||
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_transform(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Dot<N>
|
||||
*/
|
||||
|
||||
/// Computes the dot product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||||
Dot::dot(a, b)
|
||||
}
|
||||
|
||||
/// Computes a subtraction followed by a dot product.
|
||||
#[inline(always)]
|
||||
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
||||
Dot::sub_dot(a, b, c)
|
||||
}
|
||||
|
||||
/*
|
||||
* Norm<N>
|
||||
*/
|
||||
|
||||
/// Computes the L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
pub fn norm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||||
Norm::norm(v)
|
||||
}
|
||||
|
||||
/// Computes the squared L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
pub fn sqnorm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||||
Norm::sqnorm(v)
|
||||
}
|
||||
|
||||
/// Gets the normalized version of a vector.
|
||||
#[inline(always)]
|
||||
pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
|
||||
Norm::normalize_cpy(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* Det<N>
|
||||
*/
|
||||
/// Computes the determinant of a square matrix.
|
||||
#[inline(always)]
|
||||
pub fn det<M: Det<N>, N>(m: &M) -> N {
|
||||
Det::det(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* Cross<V>
|
||||
*/
|
||||
|
||||
/// Computes the cross product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||||
Cross::cross(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
* CrossMatrix<M>
|
||||
*/
|
||||
|
||||
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
|
||||
/// product.
|
||||
#[inline(always)]
|
||||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||||
CrossMatrix::cross_matrix(v)
|
||||
}
|
||||
|
||||
/*
|
||||
* ToHomogeneous<U>
|
||||
*/
|
||||
|
||||
/// Converts a matrix or vector to homogeneous coordinates.
|
||||
#[inline(always)]
|
||||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||||
ToHomogeneous::to_homogeneous(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* FromHomogeneous<U>
|
||||
*/
|
||||
|
||||
/// Converts a matrix or vector from homogeneous coordinates.
|
||||
///
|
||||
/// w-normalization is appied.
|
||||
#[inline(always)]
|
||||
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
||||
FromHomogeneous::from(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* UniformSphereSample
|
||||
*/
|
||||
|
||||
/// Samples the unit sphere living on the dimension as the samples types.
|
||||
///
|
||||
/// The number of sampling point is implementation-specific. It is always uniform.
|
||||
#[inline(always)]
|
||||
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
|
||||
UniformSphereSample::sample(f)
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// Operations
|
||||
//
|
||||
//
|
||||
|
||||
/*
|
||||
* AproxEq<N>
|
||||
*/
|
||||
/// Tests approximate equality.
|
||||
#[inline(always)]
|
||||
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
|
||||
ApproxEq::approx_eq(a, b)
|
||||
}
|
||||
|
||||
/// Tests approximate equality using a custom epsilon.
|
||||
#[inline(always)]
|
||||
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(a, b, eps)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Absolute<A>
|
||||
*/
|
||||
|
||||
/// Computes a component-wise absolute value.
|
||||
#[inline(always)]
|
||||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||||
Absolute::abs(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* Inv
|
||||
*/
|
||||
|
||||
/// Gets an inverted copy of a matrix.
|
||||
#[inline(always)]
|
||||
pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
||||
Inv::inv_cpy(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* Transpose
|
||||
*/
|
||||
|
||||
/// Gets a transposed copy of a matrix.
|
||||
#[inline(always)]
|
||||
pub fn transpose<M: Transpose>(m: &M) -> M {
|
||||
Transpose::transpose_cpy(m)
|
||||
}
|
||||
|
||||
/*
|
||||
* Outer<M>
|
||||
*/
|
||||
|
||||
/// Computes the outer product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||||
Outer::outer(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
* Cov<M>
|
||||
*/
|
||||
|
||||
/// Computes the covariance of a set of observations.
|
||||
#[inline(always)]
|
||||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||||
Cov::cov(observations)
|
||||
}
|
||||
|
||||
/*
|
||||
* Mean<N>
|
||||
*/
|
||||
|
||||
/// Computes the mean of a set of observations.
|
||||
#[inline(always)]
|
||||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||||
Mean::mean(observations)
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// Structure
|
||||
//
|
||||
//
|
||||
|
||||
/*
|
||||
* Eye
|
||||
*/
|
||||
/// Construct the identity matrix for a given dimension
|
||||
#[inline(always)]
|
||||
pub fn new_identity<M: Eye>(dim: uint) -> M {
|
||||
Eye::new_identity(dim)
|
||||
}
|
||||
|
||||
/*
|
||||
* Basis
|
||||
*/
|
||||
|
||||
/// Computes the canonical basis for a given dimension.
|
||||
#[inline(always)]
|
||||
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
|
||||
Basis::canonical_basis(f)
|
||||
}
|
||||
|
||||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||||
#[inline(always)]
|
||||
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
|
||||
Basis::orthonormal_subspace_basis(v, f)
|
||||
}
|
||||
|
||||
/*
|
||||
* Row<R>
|
||||
*/
|
||||
|
||||
/*
|
||||
* Col<C>
|
||||
*/
|
||||
|
||||
/*
|
||||
* Diag<V>
|
||||
*/
|
||||
/// Gets the diagonal of a square matrix.
|
||||
#[inline(always)]
|
||||
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
|
||||
m.diag()
|
||||
}
|
||||
|
||||
/*
|
||||
* Dim
|
||||
*/
|
||||
/// Gets the dimension an object lives in.
|
||||
///
|
||||
/// Same as `Dim::dim::(None::<V>)`.
|
||||
#[inline(always)]
|
||||
pub fn dim<V: Dim>() -> uint {
|
||||
Dim::dim(None::<V>)
|
||||
}
|
||||
|
||||
/*
|
||||
* Cast<T>
|
||||
*/
|
||||
/// Converts an object from one type to another.
|
||||
///
|
||||
/// For primitive types, this is the same as the `as` keywords.
|
||||
/// The following properties are preserved by a cast:
|
||||
///
|
||||
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
|
||||
/// not possible)
|
||||
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
|
||||
/// Rot3<f64> is not possible)
|
||||
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
|
||||
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
|
||||
/// range of an i32 when a cast from i64 to i32 is done).
|
||||
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
|
||||
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
|
||||
#[inline(always)]
|
||||
pub fn cast<T, U: Cast<T>>(t: T) -> U {
|
||||
Cast::from(t)
|
||||
}
|
||||
|
||||
/*
|
||||
* Indexable
|
||||
*/
|
||||
|
|
349
src/na.rs
349
src/na.rs
|
@ -1,4 +1,4 @@
|
|||
//! **nalgebra** prelude.
|
||||
//! [DEPRECATED] **nalgebra** prelude.
|
||||
|
||||
use std::num::{Zero, One, FloatMath};
|
||||
use std::cmp;
|
||||
|
@ -94,91 +94,94 @@ pub mod overload {
|
|||
|
||||
/// Change the input value to ensure it is on the range `[min, max]`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn clamp<T: cmp::PartialOrd>(val: T, min: T, max: T) -> T {
|
||||
if val > min {
|
||||
if val < max {
|
||||
val
|
||||
}
|
||||
else {
|
||||
max
|
||||
}
|
||||
}
|
||||
else {
|
||||
min
|
||||
}
|
||||
super::clamp(val, min, max)
|
||||
}
|
||||
|
||||
/// Same as `cmp::max`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn max<T: Ord>(a: T, b: T) -> T {
|
||||
cmp::max(a, b)
|
||||
super::max(a, b)
|
||||
}
|
||||
|
||||
/// Same as `cmp::min`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn min<T: Ord>(a: T, b: T) -> T {
|
||||
cmp::min(a, b)
|
||||
super::min(a, b)
|
||||
}
|
||||
|
||||
/// Returns the infimum of `a` and `b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inf<T: PartialOrd>(a: &T, b: &T) -> T {
|
||||
PartialOrd::inf(a, b)
|
||||
super::inf(a, b)
|
||||
}
|
||||
|
||||
/// Returns the supremum of `a` and `b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn sup<T: PartialOrd>(a: &T, b: &T) -> T {
|
||||
PartialOrd::sup(a, b)
|
||||
super::sup(a, b)
|
||||
}
|
||||
|
||||
/// Compare `a` and `b` using a partial ordering relation.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> PartialOrdering {
|
||||
PartialOrd::partial_cmp(a, b)
|
||||
super::partial_cmp(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_lt(a, b)
|
||||
super::partial_lt(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_le(a, b)
|
||||
super::partial_le(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_gt(a, b)
|
||||
super::partial_gt(a, b)
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||||
PartialOrd::partial_ge(a, b)
|
||||
super::partial_ge(a, b)
|
||||
}
|
||||
|
||||
/// Return the minimum of `a` and `b` if they are comparable.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_min(a, b)
|
||||
super::partial_min(a, b)
|
||||
}
|
||||
|
||||
/// Return the maximum of `a` and `b` if they are comparable.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_max(a, b)
|
||||
super::partial_max(a, b)
|
||||
}
|
||||
|
||||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||||
/// `min` or `max`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
|
||||
PartialOrd::partial_clamp(value, min, max)
|
||||
super::partial_clamp(value, min, max)
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -191,24 +194,27 @@ pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) ->
|
|||
///
|
||||
/// Same as `Identity::new()`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn identity() -> Identity {
|
||||
Identity::new()
|
||||
super::identity()
|
||||
}
|
||||
|
||||
/// Create a zero-valued value.
|
||||
///
|
||||
/// This is the same as `std::num::zero()`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn zero<T: Zero>() -> T {
|
||||
Zero::zero()
|
||||
super::zero()
|
||||
}
|
||||
|
||||
/// Create a one-valued value.
|
||||
///
|
||||
/// This is the same as `std::num::one()`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn one<T: One>() -> T {
|
||||
One::one()
|
||||
super::one()
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -223,19 +229,7 @@ pub fn one<T: One>() -> T {
|
|||
/// Computes a projection matrix given the frustrum near plane width, height, the field of
|
||||
/// view, and the distance to the clipping planes (`znear` and `zfar`).
|
||||
pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
|
||||
let aspect = width / height;
|
||||
|
||||
let _1: N = one();
|
||||
let sy = _1 / (fov * cast(0.5)).tan();
|
||||
let sx = -sy / aspect;
|
||||
let sz = -(zfar + znear) / (znear - zfar);
|
||||
let tz = zfar * znear * cast(2.0) / (znear - zfar);
|
||||
|
||||
Mat4::new(
|
||||
sx, zero(), zero(), zero(),
|
||||
zero(), sy, zero(), zero(),
|
||||
zero(), zero(), sz, tz,
|
||||
zero(), zero(), one(), zero())
|
||||
super::perspective3d(width, height, fov, znear, zfar)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -243,47 +237,24 @@ pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N,
|
|||
*/
|
||||
|
||||
/// Gets the translation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let trans = na::translation(&t);
|
||||
///
|
||||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
||||
m.translation()
|
||||
super::translation(m)
|
||||
}
|
||||
|
||||
/// Gets the inverse translation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let itrans = na::inv_translation(&t);
|
||||
///
|
||||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
|
||||
m.inv_translation()
|
||||
super::inv_translation(m)
|
||||
}
|
||||
|
||||
/// Applies the translation `v` to a copy of `m`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
||||
Translation::append_translation_cpy(m, v)
|
||||
super::append_translation(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -291,44 +262,17 @@ pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
|||
*/
|
||||
|
||||
/// Applies a translation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::translate(&t, &v);
|
||||
///
|
||||
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||||
m.translate(v)
|
||||
super::translate(m, v)
|
||||
}
|
||||
|
||||
/// Applies an inverse translation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Iso3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||||
///
|
||||
/// let tv = na::inv_translate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_translate(v)
|
||||
super::inv_translate(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -336,82 +280,34 @@ pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
|||
*/
|
||||
|
||||
/// Gets the rotation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||||
m.rotation()
|
||||
super::rotation(m)
|
||||
}
|
||||
|
||||
|
||||
/// Gets the inverse rotation applicable by `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||||
m.inv_rotation()
|
||||
super::inv_rotation(m)
|
||||
}
|
||||
|
||||
// FIXME: this example is a bit shity
|
||||
/// Applies the rotation `v` to a copy of `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::append_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||||
Rotation::append_rotation_cpy(m, v)
|
||||
super::append_rotation(m, v)
|
||||
}
|
||||
|
||||
// FIXME: this example is a bit shity
|
||||
/// Pre-applies the rotation `v` to a copy of `m`.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use nalgebra::na::{Vec3, Rot3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::prepend_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||||
Rotation::prepend_rotation_cpy(m, v)
|
||||
super::prepend_rotation(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -419,48 +315,18 @@ pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
|||
*/
|
||||
|
||||
/// Applies a rotation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use std::num::Float;
|
||||
/// use nalgebra::na::{Rot3, Vec3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||||
///
|
||||
/// let tv = na::rotate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||||
m.rotate(v)
|
||||
super::rotate(m, v)
|
||||
}
|
||||
|
||||
|
||||
/// Applies an inverse rotation to a vector.
|
||||
///
|
||||
/// ```rust
|
||||
/// extern crate nalgebra;
|
||||
/// use std::num::Float;
|
||||
/// use nalgebra::na::{Rot3, Vec3};
|
||||
/// use nalgebra::na;
|
||||
///
|
||||
/// fn main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||||
///
|
||||
/// let tv = na::inv_rotate(&t, &v);
|
||||
///
|
||||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
|
||||
/// }
|
||||
/// ```
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_rotate(v)
|
||||
super::inv_rotate(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -469,23 +335,25 @@ pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
|||
|
||||
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV,
|
||||
center: &LV) -> M {
|
||||
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
|
||||
super::append_rotation_wrt_point(m, amount, center)
|
||||
}
|
||||
|
||||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV) -> M {
|
||||
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
|
||||
super::append_rotation_wrt_center(m, amount)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -494,8 +362,9 @@ pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
|||
|
||||
/// Builds a rotation matrix from `r`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
|
||||
r.to_rot_mat()
|
||||
super::to_rot_mat(r)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -504,8 +373,9 @@ pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, A
|
|||
|
||||
/// Applies a rotation using the absolute values of its components.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
||||
m.absolute_rotate(v)
|
||||
super::absolute_rotate(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -514,20 +384,22 @@ pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
|||
|
||||
/// Gets the transformation applicable by `m`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||||
m.transformation()
|
||||
super::transformation(m)
|
||||
}
|
||||
|
||||
/// Gets the inverse transformation applicable by `m`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||||
m.inv_transformation()
|
||||
super::inv_transformation(m)
|
||||
}
|
||||
|
||||
/// Gets a transformed copy of `m`.
|
||||
#[inline(always)]
|
||||
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
||||
Transformation::append_transformation_cpy(m, t)
|
||||
super::append_transformation(m, t)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -536,14 +408,16 @@ pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
|||
|
||||
/// Applies a transformation to a vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||||
m.transform(v)
|
||||
super::transform(m, v)
|
||||
}
|
||||
|
||||
/// Applies an inverse transformation to a vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||||
m.inv_transform(v)
|
||||
super::inv_transform(m, v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -552,14 +426,16 @@ pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
|||
|
||||
/// Computes the dot product of two vectors.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||||
Dot::dot(a, b)
|
||||
super::dot(a, b)
|
||||
}
|
||||
|
||||
/// Computes a subtraction followed by a dot product.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
||||
Dot::sub_dot(a, b, c)
|
||||
super::sub_dot(a, b, c)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -568,20 +444,23 @@ pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
|||
|
||||
/// Computes the L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn norm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||||
Norm::norm(v)
|
||||
super::norm(v)
|
||||
}
|
||||
|
||||
/// Computes the squared L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn sqnorm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||||
Norm::sqnorm(v)
|
||||
super::sqnorm(v)
|
||||
}
|
||||
|
||||
/// Gets the normalized version of a vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
|
||||
Norm::normalize_cpy(v)
|
||||
super::normalize(v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -589,8 +468,9 @@ pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
|
|||
*/
|
||||
/// Computes the determinant of a square matrix.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn det<M: Det<N>, N>(m: &M) -> N {
|
||||
Det::det(m)
|
||||
super::det(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -599,8 +479,9 @@ pub fn det<M: Det<N>, N>(m: &M) -> N {
|
|||
|
||||
/// Computes the cross product of two vectors.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||||
Cross::cross(a, b)
|
||||
super::cross(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -610,8 +491,9 @@ pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
|||
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
|
||||
/// product.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||||
CrossMatrix::cross_matrix(v)
|
||||
super::cross_matrix(v)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -620,8 +502,9 @@ pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
|||
|
||||
/// Converts a matrix or vector to homogeneous coordinates.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||||
ToHomogeneous::to_homogeneous(m)
|
||||
super::to_homogeneous(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -632,8 +515,9 @@ pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
|||
///
|
||||
/// w-normalization is appied.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
||||
FromHomogeneous::from(m)
|
||||
super::from_homogeneous(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -644,8 +528,9 @@ pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
|||
///
|
||||
/// The number of sampling point is implementation-specific. It is always uniform.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
|
||||
UniformSphereSample::sample(f)
|
||||
super::sample_sphere(f)
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -659,14 +544,16 @@ pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
|
|||
*/
|
||||
/// Tests approximate equality.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
|
||||
ApproxEq::approx_eq(a, b)
|
||||
super::approx_eq(a, b)
|
||||
}
|
||||
|
||||
/// Tests approximate equality using a custom epsilon.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(a, b, eps)
|
||||
super::approx_eq_eps(a, b, eps)
|
||||
}
|
||||
|
||||
|
||||
|
@ -676,8 +563,9 @@ pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
|
|||
|
||||
/// Computes a component-wise absolute value.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||||
Absolute::abs(m)
|
||||
super::abs(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -686,8 +574,9 @@ pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
|||
|
||||
/// Gets an inverted copy of a matrix.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
||||
Inv::inv_cpy(m)
|
||||
super::inv(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -696,8 +585,9 @@ pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
|||
|
||||
/// Gets a transposed copy of a matrix.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn transpose<M: Transpose>(m: &M) -> M {
|
||||
Transpose::transpose_cpy(m)
|
||||
super::transpose(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -706,8 +596,9 @@ pub fn transpose<M: Transpose>(m: &M) -> M {
|
|||
|
||||
/// Computes the outer product of two vectors.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||||
Outer::outer(a, b)
|
||||
super::outer(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -716,8 +607,9 @@ pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
|||
|
||||
/// Computes the covariance of a set of observations.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||||
Cov::cov(observations)
|
||||
super::cov(observations)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -726,8 +618,9 @@ pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
|||
|
||||
/// Computes the mean of a set of observations.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||||
Mean::mean(observations)
|
||||
super::mean(observations)
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -741,7 +634,10 @@ pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
|||
*/
|
||||
/// Construct the identity matrix for a given dimension
|
||||
#[inline(always)]
|
||||
pub fn new_identity<M: Eye>(dim: uint) -> M { Eye::new_identity(dim) }
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn new_identity<M: Eye>(dim: uint) -> M {
|
||||
super::new_identity(dim)
|
||||
}
|
||||
|
||||
/*
|
||||
* Basis
|
||||
|
@ -749,14 +645,16 @@ pub fn new_identity<M: Eye>(dim: uint) -> M { Eye::new_identity(dim) }
|
|||
|
||||
/// Computes the canonical basis for a given dimension.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
|
||||
Basis::canonical_basis(f)
|
||||
super::canonical_basis(f)
|
||||
}
|
||||
|
||||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
|
||||
Basis::orthonormal_subspace_basis(v, f)
|
||||
super::orthonormal_subspace_basis(v, f)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -772,8 +670,9 @@ pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
|
|||
*/
|
||||
/// Gets the diagonal of a square matrix.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
|
||||
m.diag()
|
||||
super::diag(m)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -783,8 +682,9 @@ pub fn diag<M: Diag<V>, V>(m: &M) -> V {
|
|||
///
|
||||
/// Same as `Dim::dim::(None::<V>)`.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn dim<V: Dim>() -> uint {
|
||||
Dim::dim(None::<V>)
|
||||
super::dim::<V>()
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -805,8 +705,9 @@ pub fn dim<V: Dim>() -> uint {
|
|||
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
|
||||
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
|
||||
#[inline(always)]
|
||||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||||
pub fn cast<T, U: Cast<T>>(t: T) -> U {
|
||||
Cast::from(t)
|
||||
super::cast::<T, U>(t)
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
#![feature(macro_rules)]
|
||||
|
||||
extern crate debug;
|
||||
extern crate "nalgebra" as na;
|
||||
|
||||
use std::num::{Float, abs};
|
||||
use std::rand::random;
|
||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col};
|
||||
use na;
|
||||
use std::cmp::{min, max};
|
||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col};
|
||||
|
||||
macro_rules! test_inv_mat_impl(
|
||||
($t: ty) => (
|
|
@ -1,7 +1,10 @@
|
|||
#![feature(macro_rules)]
|
||||
|
||||
extern crate debug;
|
||||
extern crate "nalgebra" as na;
|
||||
|
||||
use std::rand::random;
|
||||
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||
use na::{Mat3, Iterable, IterableMut}; // FIXME: get rid of that
|
||||
use na;
|
||||
use na::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6, Mat3, Iterable, IterableMut};
|
||||
|
||||
macro_rules! test_iterator_impl(
|
||||
($t: ty, $n: ty) => (
|
Loading…
Reference in New Issue