commit
b9a524427b
@ -19,6 +19,7 @@ pub mod householder;
|
||||
mod inverse;
|
||||
mod lu;
|
||||
mod permutation_sequence;
|
||||
mod pow;
|
||||
mod qr;
|
||||
mod schur;
|
||||
mod solve;
|
||||
@ -41,6 +42,7 @@ pub use self::full_piv_lu::*;
|
||||
pub use self::hessenberg::*;
|
||||
pub use self::lu::*;
|
||||
pub use self::permutation_sequence::*;
|
||||
pub use self::pow::*;
|
||||
pub use self::qr::*;
|
||||
pub use self::schur::*;
|
||||
pub use self::svd::*;
|
||||
|
72
src/linalg/pow.rs
Normal file
72
src/linalg/pow.rs
Normal file
@ -0,0 +1,72 @@
|
||||
//! This module provides the matrix exponential (pow) function to square matrices.
|
||||
|
||||
use std::ops::DivAssign;
|
||||
|
||||
use crate::{allocator::Allocator, DefaultAllocator, DimMin, MatrixN};
|
||||
use num::PrimInt;
|
||||
use simba::scalar::ComplexField;
|
||||
|
||||
impl<N: ComplexField, D> MatrixN<N, D>
|
||||
where
|
||||
D: DimMin<D, Output = D>,
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
/// Attempts to raise this matrix to an integral power `e` in-place. If this
|
||||
/// matrix is non-invertible and `e` is negative, it leaves this matrix
|
||||
/// untouched and returns `Err(())`. Otherwise, it returns `Ok(())` and
|
||||
/// overwrites this matrix with the result.
|
||||
#[must_use]
|
||||
pub fn pow_mut<T: PrimInt + DivAssign>(&mut self, mut e: T) -> Result<(), ()> {
|
||||
let zero = T::zero();
|
||||
|
||||
// A matrix raised to the zeroth power is just the identity.
|
||||
if e == zero {
|
||||
self.fill_with_identity();
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// If e is negative, we compute the inverse matrix, then raise it to the
|
||||
// power of -e.
|
||||
if e < zero {
|
||||
if !self.try_inverse_mut() {
|
||||
return Err(());
|
||||
}
|
||||
}
|
||||
|
||||
let one = T::one();
|
||||
let two = T::from(2u8).unwrap();
|
||||
|
||||
// We use the buffer to hold the result of multiplier ^ 2, thus avoiding
|
||||
// extra allocations.
|
||||
let mut multiplier = self.clone();
|
||||
let mut buf = self.clone();
|
||||
|
||||
// Exponentiation by squares.
|
||||
loop {
|
||||
if e % two == one {
|
||||
*self *= &multiplier;
|
||||
}
|
||||
|
||||
e /= two;
|
||||
multiplier.mul_to(&multiplier, &mut buf);
|
||||
multiplier.copy_from(&buf);
|
||||
|
||||
if e == zero {
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to raise this matrix to an integral power `e`. If this matrix
|
||||
/// is non-invertible and `e` is negative, it returns `None`. Otherwise, it
|
||||
/// returns the result as a new matrix. Uses exponentiation by squares.
|
||||
pub fn pow<T: PrimInt + DivAssign>(&self, e: T) -> Option<Self> {
|
||||
let mut clone = self.clone();
|
||||
|
||||
match clone.pow_mut(e) {
|
||||
Ok(()) => Some(clone),
|
||||
Err(()) => None,
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user