glm: simplify some code for projection matrix computation.

This commit is contained in:
sebcrozet 2018-12-29 11:43:56 +01:00 committed by Sébastien Crozet
parent ea933c654a
commit b74aeb12e2
1 changed files with 106 additions and 116 deletions

View File

@ -98,12 +98,12 @@ pub fn ortho_lh_no<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar
let two : N = ::convert(2.0);
let mut mat : TMat4<N> = TMat4::<N>::identity();
mat[(0,0)] = two / (right - left);
mat[(0,3)] = -(right + left) / (right - left);
mat[(1,1)] = two / (top-bottom);
mat[(1,3)] = -(top + bottom) / (top - bottom);
mat[(2,2)] = two / (zfar - znear);
mat[(2,3)] = -(zfar + znear) / (zfar - znear);
mat[(0, 0)] = two / (right - left);
mat[(0, 3)] = -(right + left) / (right - left);
mat[(1, 1)] = two / (top-bottom);
mat[(1, 3)] = -(top + bottom) / (top - bottom);
mat[(2, 2)] = two / (zfar - znear);
mat[(2, 3)] = -(zfar + znear) / (zfar - znear);
mat
}
@ -124,12 +124,12 @@ pub fn ortho_lh_zo<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar
let two : N = ::convert(2.0);
let mut mat : TMat4<N> = TMat4::<N>::identity();
mat[(0,0)] = two / (right - left);
mat[(0,3)] = - (right + left) / (right - left);
mat[(1,1)] = two / (top - bottom);
mat[(1,3)] = - (top + bottom) / (top - bottom);
mat[(2,2)] = one / (zfar - znear);
mat[(2,3)] = - znear / (zfar - znear);
mat[(0, 0)] = two / (right - left);
mat[(0, 3)] = - (right + left) / (right - left);
mat[(1, 1)] = two / (top - bottom);
mat[(1, 3)] = - (top + bottom) / (top - bottom);
mat[(2, 2)] = one / (zfar - znear);
mat[(2, 3)] = - znear / (zfar - znear);
mat
}
@ -179,12 +179,12 @@ pub fn ortho_rh_no<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar
let two : N = ::convert(2.0);
let mut mat : TMat4<N> = TMat4::<N>::identity();
mat[(0,0)] = two / (right - left);
mat[(0,3)] = - (right + left) / (right - left);
mat[(1,1)] = two/(top-bottom);
mat[(1,3)] = - (top + bottom) / (top - bottom);
mat[(2,2)] = - two / (zfar - znear);
mat[(2,3)] = - (zfar + znear) / (zfar - znear);
mat[(0, 0)] = two / (right - left);
mat[(0, 3)] = - (right + left) / (right - left);
mat[(1, 1)] = two/(top-bottom);
mat[(1, 3)] = - (top + bottom) / (top - bottom);
mat[(2, 2)] = - two / (zfar - znear);
mat[(2, 3)] = - (zfar + znear) / (zfar - znear);
mat
}
@ -205,12 +205,12 @@ pub fn ortho_rh_zo<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar
let two : N = ::convert(2.0);
let mut mat : TMat4<N> = TMat4::<N>::identity();
mat[(0,0)] = two / (right - left);
mat[(0,3)] = - (right + left) / (right - left);
mat[(1,1)] = two/(top-bottom);
mat[(1,3)] = - (top + bottom) / (top - bottom);
mat[(2,2)] = - one / (zfar - znear);
mat[(2,3)] = - znear / (zfar - znear);
mat[(0, 0)] = two / (right - left);
mat[(0, 3)] = - (right + left) / (right - left);
mat[(1, 1)] = two/(top-bottom);
mat[(1, 3)] = - (top + bottom) / (top - bottom);
mat[(2, 2)] = - one / (zfar - znear);
mat[(2, 3)] = - znear / (zfar - znear);
mat
}
@ -282,21 +282,18 @@ pub fn perspective_fov_lh_no<N: Real>(fov: N, width: N, height: N, near: N, far:
"The fov must be greater than zero"
);
let zero : N = N::zero();
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let zero = N::zero();
let mut mat = TMat4::zeros();
let rad = fov;
let h = (rad * ::convert(0.5)).cos() / (rad * ::convert(0.5)).sin();
let w = h * height / width;
mat[(0,0)] = w;
mat[(1,1)] = h;
mat[(2,2)] = (far + near) / (far - near);
mat[(2,3)] = - (far * near * ::convert(2.0)) / (far - near);
mat[(3,2)] = N::one();
mat[(0, 0)] = w;
mat[(1, 1)] = h;
mat[(2, 2)] = (far + near) / (far - near);
mat[(2, 3)] = - (far * near * ::convert(2.0)) / (far - near);
mat[(3, 2)] = N::one();
mat
}
@ -325,21 +322,17 @@ pub fn perspective_fov_lh_zo<N: Real>(fov: N, width: N, height: N, near: N, far:
"The fov must be greater than zero"
);
let zero : N = N::zero();
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let mut mat = TMat4::zeros();
let rad = fov;
let h = (rad * ::convert(0.5)).cos() / (rad * ::convert(0.5)).sin();
let w = h * height / width;
mat[(0,0)] = w;
mat[(1,1)] = h;
mat[(2,2)] = far / (far - near);
mat[(2,3)] = -(far * near) / (far - near);
mat[(3,2)] = N::one();
mat[(0, 0)] = w;
mat[(1, 1)] = h;
mat[(2, 2)] = far / (far - near);
mat[(2, 3)] = -(far * near) / (far - near);
mat[(3, 2)] = N::one();
mat
}
@ -396,21 +389,17 @@ pub fn perspective_fov_rh_no<N: Real>(fov: N, width: N, height: N, near: N, far:
"The fov must be greater than zero"
);
let zero : N = N::zero();
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let mut mat = TMat4::zeros();
let rad = fov;
let h = (rad * ::convert(0.5)).cos() / (rad * ::convert(0.5)).sin();
let w = h * height / width;
mat[(0,0)] = w;
mat[(1,1)] = h;
mat[(2,2)] = - (far + near) / (far - near);
mat[(2,3)] = - (far * near * ::convert(2.0)) / (far - near);
mat[(3,2)] = -N::one();
mat[(0, 0)] = w;
mat[(1, 1)] = h;
mat[(2, 2)] = - (far + near) / (far - near);
mat[(2, 3)] = - (far * near * ::convert(2.0)) / (far - near);
mat[(3, 2)] = -N::one();
mat
}
@ -439,21 +428,17 @@ pub fn perspective_fov_rh_zo<N: Real>(fov: N, width: N, height: N, near: N, far:
"The fov must be greater than zero"
);
let zero : N = N::zero();
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let mut mat = TMat4::zeros();
let rad = fov;
let h = (rad * ::convert(0.5)).cos() / (rad * ::convert(0.5)).sin();
let w = h * height / width;
mat[(0,0)] = w;
mat[(1,1)] = h;
mat[(2,2)] = far / (near - far);
mat[(2,3)] = -(far * near) / (far - near);
mat[(3,2)] = -N::one();
mat[(0, 0)] = w;
mat[(1, 1)] = h;
mat[(2, 2)] = far / (near - far);
mat[(2, 3)] = -(far * near) / (far - near);
mat[(3, 2)] = -N::one();
mat
}
@ -481,8 +466,10 @@ pub fn perspective_fov_zo<N: Real>(fov: N, width: N, height: N, near: N, far: N)
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
// TODO: Breaking change - the arguments can be reversed back to proper glm conventions
// TODO: Breaking change - revert back to proper glm conventions?
//
// Prior to changes to support configuring the behaviour of this function it was simply
// a wrapper around Perspective3::new(). The argument order for that function is different
@ -508,8 +495,10 @@ pub fn perspective<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_lh<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
perspective_lh_no(fovy, aspect, near, far)
perspective_lh_no(aspect, fovy, near, far)
}
/// Creates a matrix for a left hand perspective-view frustum with a depth range of -1 to 1
@ -521,6 +510,8 @@ pub fn perspective_lh<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N>
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_lh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
@ -531,21 +522,18 @@ pub fn perspective_lh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
"The apsect ratio must not be zero."
);
let zero : N = N::zero();
let one : N = N::one();
let two : N = ::convert( 2.0);
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let zero = N::zero();
let one = N::one();
let two: N = ::convert( 2.0);
let mut mat : TMat4<N> = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0,0)] = one / (aspect * tan_half_fovy);
mat[(1,1)] = one / tan_half_fovy;
mat[(2,2)] = (far + near) / (far - near);
mat[(2,3)] = -(two * far * near) / (far - near);
mat[(3,2)] = one;
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = (far + near) / (far - near);
mat[(2, 3)] = -(two * far * near) / (far - near);
mat[(3, 2)] = one;
mat
}
@ -559,6 +547,8 @@ pub fn perspective_lh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_lh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
@ -569,21 +559,18 @@ pub fn perspective_lh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
"The apsect ratio must not be zero."
);
let zero : N = N::zero();
let one : N = N::one();
let two : N = ::convert( 2.0);
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let zero = N::zero();
let one = N::one();
let two: N = ::convert( 2.0);
let mut mat: TMat4<N> = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0,0)] = one / (aspect * tan_half_fovy);
mat[(1,1)] = one / tan_half_fovy;
mat[(2,2)] = far / (far - near);
mat[(2,3)] = -(far * near) / (far - near);
mat[(3,2)] = one;
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = far / (far - near);
mat[(2, 3)] = -(far * near) / (far - near);
mat[(3, 2)] = one;
mat
}
@ -597,6 +584,8 @@ pub fn perspective_lh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
perspective_rh_no(aspect, fovy, near, far)
}
@ -610,6 +599,8 @@ pub fn perspective_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N>
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_rh<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
perspective_rh_no(aspect, fovy, near, far)
}
@ -623,6 +614,8 @@ pub fn perspective_rh<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N>
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_rh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
@ -633,22 +626,18 @@ pub fn perspective_rh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
"The apsect ratio must not be zero."
);
let negone : N = -N::one();
let zero : N = N::zero();
let one : N = N::one();
let two : N = ::convert( 2.0);
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let negone = -N::one();
let one = N::one();
let two: N = ::convert( 2.0);
let mut mat = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0,0)] = one / (aspect * tan_half_fovy);
mat[(1,1)] = one / tan_half_fovy;
mat[(2,2)] = - (far + near) / (far - near);
mat[(2,3)] = -(two * far * near) / (far - near);
mat[(3,2)] = negone;
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = - (far + near) / (far - near);
mat[(2, 3)] = -(two * far * near) / (far - near);
mat[(3, 2)] = negone;
mat
}
@ -662,6 +651,8 @@ pub fn perspective_rh_no<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_rh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
assert!(
!relative_eq!(far - near, N::zero()),
@ -672,22 +663,19 @@ pub fn perspective_rh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
"The apsect ratio must not be zero."
);
let negone : N = -N::one();
let zero : N = N::zero();
let one : N = N::one();
let two : N = ::convert( 2.0);
let mut mat : TMat4<N> = TMat4::<N>::new(zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero,
zero,zero,zero,zero);
let negone = -N::one();
let zero = N::zero();
let one = N::one();
let two = ::convert( 2.0);
let mut mat = TMat4::zeros();
let tan_half_fovy = (fovy / two).tan();
mat[(0,0)] = one / (aspect * tan_half_fovy);
mat[(1,1)] = one / tan_half_fovy;
mat[(2,2)] = far / (near - far);
mat[(2,3)] = -(far * near) / (far - near);
mat[(3,2)] = negone;
mat[(0, 0)] = one / (aspect * tan_half_fovy);
mat[(1, 1)] = one / tan_half_fovy;
mat[(2, 2)] = far / (near - far);
mat[(2, 3)] = -(far * near) / (far - near);
mat[(3, 2)] = negone;
mat
}
@ -701,6 +689,8 @@ pub fn perspective_rh_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<
/// * `near` - Distance from the viewer to the near clipping plane
/// * `far` - Distance from the viewer to the far clipping plane
///
/// # Important note
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
pub fn perspective_zo<N: Real>(aspect: N, fovy: N, near: N, far: N) -> TMat4<N> {
perspective_rh_zo(aspect, fovy, near, far)
}