Implemented Cholesky decomposition with tests

This commit is contained in:
Daniel 2015-08-07 14:44:25 +02:00
parent 7e88b54a8e
commit b197959e2b
4 changed files with 138 additions and 3 deletions

View File

@ -150,7 +150,8 @@ pub use structs::{
pub use linalg::{
qr,
householder_matrix
householder_matrix,
cholesky
};
mod structs;

View File

@ -115,3 +115,50 @@ pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
(eigenvectors, eigenvalues.diag())
}
/// Cholesky decomposition G of a square symmetric positive definite matrix A, such that A = G * G^T
///
/// # Arguments
/// * `m` - square symmetric positive definite matrix to decompose
pub fn cholesky<N, V, VS, M>(m: &M) -> Result<M, &'static str>
where N: BaseFloat,
VS: Indexable<usize, N> + Norm<N>,
M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> +
Sub<M, Output = M> + ColSlice<VS> +
ApproxEq<N> + Copy {
let mut out = m.clone();
for i in 0..out.nrows() {
for j in 0..(i+1) {
let mut sum: N = out[(i,j)];
for k in 0..j {
sum = sum - out[(i, k)] * out[(j, k)];
}
if i > j {
out[(i, j)] = sum / out[(j, j)];
}
else if i < j {
out[(i,j)] = N::zero();
}
else if sum > N::zero() {
out[(i,i)] = sum.sqrt();
}
else {
return Err("Cholesky: Input matrix is not positive definite to machine precision");
}
}
}
for i in 0..out.nrows() {
for j in i+1..out.ncols() {
out[(i,j)] = N::zero();
}
}
return Ok(out);
}

View File

@ -1,4 +1,4 @@
pub use self::decompositions::{qr, eigen_qr, householder_matrix};
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky};
mod decompositions;

View File

@ -3,7 +3,7 @@ extern crate rand;
use rand::random;
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
OrthoMat3, DMat, DVec, Row, Col, BaseFloat};
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag};
macro_rules! test_inv_mat_impl(
($t: ty) => (
@ -41,6 +41,30 @@ macro_rules! test_qr_impl(
);
);
macro_rules! test_cholesky_impl(
($t: ty) => (
for _ in (0usize .. 10000) {
// construct symmetric positive definite matrix
let mut randmat : $t = random();
let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat));
diagmat = na::abs(&diagmat) + 1.0;
randmat = randmat * diagmat * na::transpose(&randmat);
let result = na::cholesky(&randmat);
match result {
Ok(v) => {
let recomp = v * na::transpose(&v);
assert!(na::approx_eq(&randmat, &recomp));
},
Err(_) => assert!(false),
}
}
);
);
// NOTE: deactivated untile we get a better convergence rate.
// macro_rules! test_eigen_qr_impl(
// ($t: ty) => {
@ -600,3 +624,66 @@ fn test_ortho() {
assert!(na::approx_eq(&pm.znear(), &24.0));
assert!(na::approx_eq(&pm.zfar(), &61.0));
}
#[test]
fn test_cholesky_const() {
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0);
let g : Mat3<f64> = Mat3::<f64>::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0);
let result = na::cholesky(&a);
match result {
Ok(v) => {
assert!(na::approx_eq(&v, &g));
let recomp = v * na::transpose(&v);
assert!(na::approx_eq(&recomp, &a));
},
Err(_) => assert!(false),
}
}
#[test]
fn test_cholesky_not_spd() {
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0);
let result = na::cholesky(&a);
match result {
Ok(_) => assert!(false),
Err(_) => assert!(true),
}
}
#[test]
fn test_cholesky_mat1() {
test_cholesky_impl!(Mat1<f64>);
}
#[test]
fn test_cholesky_mat2() {
test_cholesky_impl!(Mat2<f64>);
}
#[test]
fn test_cholesky_mat3() {
test_cholesky_impl!(Mat3<f64>);
}
#[test]
fn test_cholesky_mat4() {
test_cholesky_impl!(Mat4<f64>);
}
#[test]
fn test_cholesky_mat5() {
test_cholesky_impl!(Mat5<f64>);
}
#[test]
fn test_cholesky_mat6() {
test_cholesky_impl!(Mat6<f64>);
}