Add a matrix.udu() method to compute the UDU decomposition.
This commit is contained in:
parent
ab0d335b61
commit
aeb9f7ea39
|
@ -1,8 +1,8 @@
|
||||||
use crate::storage::Storage;
|
use crate::storage::Storage;
|
||||||
use crate::{
|
use crate::{
|
||||||
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
||||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, Schur, SymmetricEigen,
|
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
|
||||||
SymmetricTridiagonal, LU, QR, SVD, U1,
|
SymmetricTridiagonal, LU, QR, SVD, U1, UDU
|
||||||
};
|
};
|
||||||
|
|
||||||
/// # Rectangular matrix decomposition
|
/// # Rectangular matrix decomposition
|
||||||
|
@ -134,6 +134,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||||
/// | -------------------------|---------------------------|--------------|
|
/// | -------------------------|---------------------------|--------------|
|
||||||
/// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
|
/// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
|
||||||
/// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. |
|
/// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. |
|
||||||
|
/// | UDU | `U * D * Uᵀ` | `U` is a upper-triangular matrix, and `D` a diagonal matrix. |
|
||||||
/// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
|
/// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
|
||||||
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
|
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
|
||||||
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
|
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
|
||||||
|
@ -149,6 +150,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> Matrix<N, D, D, S> {
|
||||||
Cholesky::new(self.into_owned())
|
Cholesky::new(self.into_owned())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Attempts to compute the UDU decomposition of this matrix.
|
||||||
|
///
|
||||||
|
/// The input matrix `self` is assumed to be symmetric and this decomposition will only read
|
||||||
|
/// the upper-triangular part of `self`.
|
||||||
|
pub fn udu(self) -> UDU<N, D>
|
||||||
|
where
|
||||||
|
N: RealField,
|
||||||
|
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
|
||||||
|
{
|
||||||
|
UDU::new(self.into_owned())
|
||||||
|
}
|
||||||
|
|
||||||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||||||
pub fn hessenberg(self) -> Hessenberg<N, D>
|
pub fn hessenberg(self) -> Hessenberg<N, D>
|
||||||
where
|
where
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
use na::{Matrix3, UDU};
|
use na::Matrix3;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
#[rustfmt::skip]
|
#[rustfmt::skip]
|
||||||
|
@ -8,7 +8,8 @@ fn udu_simple() {
|
||||||
-1.0, 2.0, -1.0,
|
-1.0, 2.0, -1.0,
|
||||||
0.0, -1.0, 2.0);
|
0.0, -1.0, 2.0);
|
||||||
|
|
||||||
let udu = UDU::new(m);
|
let udu = m.udu();
|
||||||
|
|
||||||
// Rebuild
|
// Rebuild
|
||||||
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
||||||
|
|
||||||
|
@ -24,7 +25,7 @@ fn udu_non_sym_panic() {
|
||||||
1.0, -2.0, 3.0,
|
1.0, -2.0, 3.0,
|
||||||
-2.0, 1.0, 0.0);
|
-2.0, 1.0, 0.0);
|
||||||
|
|
||||||
let udu = UDU::new(m);
|
let udu = m.udu();
|
||||||
// Rebuild
|
// Rebuild
|
||||||
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
||||||
|
|
||||||
|
@ -39,7 +40,7 @@ mod quickcheck_tests {
|
||||||
macro_rules! gen_tests(
|
macro_rules! gen_tests(
|
||||||
($module: ident, $scalar: ty) => {
|
($module: ident, $scalar: ty) => {
|
||||||
mod $module {
|
mod $module {
|
||||||
use na::{UDU, DMatrix, Matrix4};
|
use na::{DMatrix, Matrix4};
|
||||||
#[allow(unused_imports)]
|
#[allow(unused_imports)]
|
||||||
use crate::core::helper::{RandScalar, RandComplex};
|
use crate::core::helper::{RandScalar, RandComplex};
|
||||||
|
|
||||||
|
@ -48,7 +49,7 @@ mod quickcheck_tests {
|
||||||
let n = std::cmp::max(1, std::cmp::min(n, 10));
|
let n = std::cmp::max(1, std::cmp::min(n, 10));
|
||||||
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part();
|
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part();
|
||||||
|
|
||||||
let udu = UDU::new(m.clone());
|
let udu = m.clone().udu();
|
||||||
let p = &udu.u * &udu.d_matrix() * &udu.u.transpose();
|
let p = &udu.u * &udu.d_matrix() * &udu.u.transpose();
|
||||||
|
|
||||||
relative_eq!(m, p, epsilon = 1.0e-7)
|
relative_eq!(m, p, epsilon = 1.0e-7)
|
||||||
|
@ -57,7 +58,7 @@ mod quickcheck_tests {
|
||||||
fn udu_static(m: Matrix4<$scalar>) -> bool {
|
fn udu_static(m: Matrix4<$scalar>) -> bool {
|
||||||
let m = m.map(|e| e.0).hermitian_part();
|
let m = m.map(|e| e.0).hermitian_part();
|
||||||
|
|
||||||
let udu = UDU::new(m.clone());
|
let udu = m.udu();
|
||||||
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
let p = udu.u * udu.d_matrix() * udu.u.transpose();
|
||||||
|
|
||||||
relative_eq!(m, p, epsilon = 1.0e-7)
|
relative_eq!(m, p, epsilon = 1.0e-7)
|
||||||
|
|
Loading…
Reference in New Issue