Add a matrix.udu() method to compute the UDU decomposition.

This commit is contained in:
Crozet Sébastien 2021-02-25 13:20:20 +01:00
parent ab0d335b61
commit aeb9f7ea39
2 changed files with 22 additions and 8 deletions

View File

@ -1,8 +1,8 @@
use crate::storage::Storage; use crate::storage::Storage;
use crate::{ use crate::{
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff, Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, Schur, SymmetricEigen, DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
SymmetricTridiagonal, LU, QR, SVD, U1, SymmetricTridiagonal, LU, QR, SVD, U1, UDU
}; };
/// # Rectangular matrix decomposition /// # Rectangular matrix decomposition
@ -134,6 +134,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// | -------------------------|---------------------------|--------------| /// | -------------------------|---------------------------|--------------|
/// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. | /// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
/// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. | /// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. |
/// | UDU | `U * D * Uᵀ` | `U` is a upper-triangular matrix, and `D` a diagonal matrix. |
/// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. | /// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. | /// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. | /// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
@ -149,6 +150,18 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> Matrix<N, D, D, S> {
Cholesky::new(self.into_owned()) Cholesky::new(self.into_owned())
} }
/// Attempts to compute the UDU decomposition of this matrix.
///
/// The input matrix `self` is assumed to be symmetric and this decomposition will only read
/// the upper-triangular part of `self`.
pub fn udu(self) -> UDU<N, D>
where
N: RealField,
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{
UDU::new(self.into_owned())
}
/// Computes the Hessenberg decomposition of this matrix using householder reflections. /// Computes the Hessenberg decomposition of this matrix using householder reflections.
pub fn hessenberg(self) -> Hessenberg<N, D> pub fn hessenberg(self) -> Hessenberg<N, D>
where where

View File

@ -1,4 +1,4 @@
use na::{Matrix3, UDU}; use na::Matrix3;
#[test] #[test]
#[rustfmt::skip] #[rustfmt::skip]
@ -8,7 +8,8 @@ fn udu_simple() {
-1.0, 2.0, -1.0, -1.0, 2.0, -1.0,
0.0, -1.0, 2.0); 0.0, -1.0, 2.0);
let udu = UDU::new(m); let udu = m.udu();
// Rebuild // Rebuild
let p = udu.u * udu.d_matrix() * udu.u.transpose(); let p = udu.u * udu.d_matrix() * udu.u.transpose();
@ -24,7 +25,7 @@ fn udu_non_sym_panic() {
1.0, -2.0, 3.0, 1.0, -2.0, 3.0,
-2.0, 1.0, 0.0); -2.0, 1.0, 0.0);
let udu = UDU::new(m); let udu = m.udu();
// Rebuild // Rebuild
let p = udu.u * udu.d_matrix() * udu.u.transpose(); let p = udu.u * udu.d_matrix() * udu.u.transpose();
@ -39,7 +40,7 @@ mod quickcheck_tests {
macro_rules! gen_tests( macro_rules! gen_tests(
($module: ident, $scalar: ty) => { ($module: ident, $scalar: ty) => {
mod $module { mod $module {
use na::{UDU, DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
#[allow(unused_imports)] #[allow(unused_imports)]
use crate::core::helper::{RandScalar, RandComplex}; use crate::core::helper::{RandScalar, RandComplex};
@ -48,7 +49,7 @@ mod quickcheck_tests {
let n = std::cmp::max(1, std::cmp::min(n, 10)); let n = std::cmp::max(1, std::cmp::min(n, 10));
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part();
let udu = UDU::new(m.clone()); let udu = m.clone().udu();
let p = &udu.u * &udu.d_matrix() * &udu.u.transpose(); let p = &udu.u * &udu.d_matrix() * &udu.u.transpose();
relative_eq!(m, p, epsilon = 1.0e-7) relative_eq!(m, p, epsilon = 1.0e-7)
@ -57,7 +58,7 @@ mod quickcheck_tests {
fn udu_static(m: Matrix4<$scalar>) -> bool { fn udu_static(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0).hermitian_part(); let m = m.map(|e| e.0).hermitian_part();
let udu = UDU::new(m.clone()); let udu = m.udu();
let p = udu.u * udu.d_matrix() * udu.u.transpose(); let p = udu.u * udu.d_matrix() * udu.u.transpose();
relative_eq!(m, p, epsilon = 1.0e-7) relative_eq!(m, p, epsilon = 1.0e-7)