Add implementation of Vec0.

This commit is contained in:
Sébastien Crozet 2013-07-20 16:32:39 +02:00
parent d74a5905c6
commit ae74a05fdd
5 changed files with 288 additions and 45 deletions

View File

@ -21,6 +21,7 @@ pub mod dvec;
// specialization for some 1d, 2d and 3d operations
pub mod mat_spec;
pub mod vec_spec;
pub mod vec0_spec;
/// Wrappers around raw matrices to restrict their behaviour.
pub mod adaptors

View File

@ -20,44 +20,8 @@ use traits::indexable::Indexable;
mod vec_impl;
// #[deriving(Ord, ToStr)]
// pub struct Vec0<N>
// { at: [N, ..0] }
// impl<N: Clone> Vec0<N>
// {
// #[inline]
// pub fn new_repeat(_: N) -> Vec0<N>
// { Vec0 { at: [ ] } }
// }
// clone_impl!(Vec0)
// deep_clone_impl!(Vec0)
// new_impl!(Vec0, 0)
// indexable_impl!(Vec0)
// dim_impl!(Vec0, 0)
// eq_impl!(Vec0)
// // (specialized) basis_impl!(Vec0, 0)
// add_impl!(Vec0)
// sub_impl!(Vec0)
// neg_impl!(Vec0)
// dot_impl!(Vec0, 0)
// sub_dot_impl!(Vec0, 0)
// scalar_mul_impl!(Vec0, 0)
// scalar_div_impl!(Vec0, 0)
// scalar_add_impl!(Vec0, 0)
// scalar_sub_impl!(Vec0, 0)
// translation_impl!(Vec0)
// translatable_impl!(Vec0)
// norm_impl!(Vec0, 0)
// approx_eq_impl!(Vec0)
// zero_impl!(Vec0)
// one_impl!(Vec0)
// bounded_impl!(Vec0)
// iterable_impl!(Vec0)
// iterable_mut_impl!(Vec0)
// to_homogeneous_impl!(Vec0, Vec1)
// from_homogeneous_impl!(Vec1, Vec0, 1)
#[deriving(Eq, Ord, Encodable, Decodable, Clone, DeepClone, Rand, Zero, ToStr)]
pub struct Vec0<N>;
#[deriving(Eq, Ord, Encodable, Decodable, Clone, DeepClone, IterBytes, Rand, Zero, ToStr)]
pub struct Vec1<N>

285
src/vec0_spec.rs Normal file
View File

@ -0,0 +1,285 @@
use std::cast;
use std::num::{Zero, One, Algebraic, Bounded};
use std::vec::{VecIterator, VecMutIterator};
use std::iterator::{Iterator, IteratorUtil, FromIterator};
use std::cmp::ApproxEq;
use std::uint::iterate;
use traits::iterable::{Iterable, IterableMut};
use traits::basis::Basis;
use traits::dim::Dim;
use traits::dot::Dot;
use traits::sub_dot::SubDot;
use traits::norm::Norm;
use traits::translation::{Translation, Translatable};
use traits::scalar_op::{ScalarMul, ScalarDiv, ScalarAdd, ScalarSub};
use traits::ring::Ring;
use traits::division_ring::DivisionRing;
use traits::indexable::Indexable;
use vec;
impl<N> vec::Vec0<N>
{
#[inline]
pub fn new() -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N: Clone> Indexable<uint, N> for vec::Vec0<N>
{
#[inline]
pub fn at(&self, i: uint) -> N
{ unsafe { cast::transmute::<&vec::Vec0<N>, &[N, ..0]>(self)[i].clone() } }
#[inline]
pub fn set(&mut self, i: uint, val: N)
{ unsafe { cast::transmute::<&mut vec::Vec0<N>, &mut [N, ..0]>(self)[i] = val } }
#[inline]
pub fn swap(&mut self, i1: uint, i2: uint)
{ unsafe { cast::transmute::<&mut vec::Vec0<N>, &mut [N, ..0]>(self).swap(i1, i2) } }
}
impl<N: Clone> vec::Vec0<N>
{
#[inline]
pub fn new_repeat(_: N) -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N> Iterable<N> for vec::Vec0<N>
{
fn iter<'l>(&'l self) -> VecIterator<'l, N>
{ unsafe { cast::transmute::<&'l vec::Vec0<N>, &'l [N, ..0]>(self).iter() } }
}
impl<N> IterableMut<N> for vec::Vec0<N>
{
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N>
{ unsafe { cast::transmute::<&'l mut vec::Vec0<N>, &'l mut [N, ..0]>(self).mut_iter() } }
}
impl<N> Dim for vec::Vec0<N>
{
#[inline]
fn dim() -> uint
{ 0 }
}
impl<N: Clone + DivisionRing + Algebraic + ApproxEq<N>> Basis for vec::Vec0<N>
{
pub fn canonical_basis(f: &fn(vec::Vec0<N>))
{
for iterate(0u, 0) |i|
{
let mut basis_element : vec::Vec0<N> = Zero::zero();
basis_element.set(i, One::one());
f(basis_element);
}
}
pub fn orthonormal_subspace_basis(&self, f: &fn(vec::Vec0<N>))
{
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
let mut basis: ~[vec::Vec0<N>] = ~[];
for iterate(0u, 0) |i|
{
let mut basis_element : vec::Vec0<N> = Zero::zero();
basis_element.set(i, One::one());
if basis.len() == 0 - 1
{ break; }
let mut elt = basis_element.clone();
elt = elt - self.scalar_mul(&basis_element.dot(self));
for basis.iter().advance |v|
{ elt = elt - v.scalar_mul(&elt.dot(v)) };
if !elt.sqnorm().approx_eq(&Zero::zero())
{
let new_element = elt.normalized();
f(new_element.clone());
basis.push(new_element);
}
}
}
}
impl<N: Clone + Add<N,N>> Add<vec::Vec0<N>, vec::Vec0<N>> for vec::Vec0<N>
{
#[inline]
fn add(&self, _: &vec::Vec0<N>) -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N: Clone + Sub<N,N>> Sub<vec::Vec0<N>, vec::Vec0<N>> for vec::Vec0<N>
{
#[inline]
fn sub(&self, _: &vec::Vec0<N>) -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N: Neg<N>> Neg<vec::Vec0<N>> for vec::Vec0<N>
{
#[inline]
fn neg(&self) -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N: Ring> Dot<N> for vec::Vec0<N>
{
#[inline]
fn dot(&self, _: &vec::Vec0<N>) -> N
{ Zero::zero() }
}
impl<N: Ring> SubDot<N> for vec::Vec0<N>
{
#[inline]
fn sub_dot(&self, _: &vec::Vec0<N>, _: &vec::Vec0<N>) -> N
{ Zero::zero() }
}
impl<N: Mul<N, N>> ScalarMul<N> for vec::Vec0<N>
{
#[inline]
fn scalar_mul(&self, _: &N) -> vec::Vec0<N>
{ vec::Vec0 }
#[inline]
fn scalar_mul_inplace(&mut self, _: &N)
{ }
}
impl<N: Div<N, N>> ScalarDiv<N> for vec::Vec0<N>
{
#[inline]
fn scalar_div(&self, _: &N) -> vec::Vec0<N>
{ vec::Vec0 }
#[inline]
fn scalar_div_inplace(&mut self, _: &N)
{ }
}
impl<N: Add<N, N>> ScalarAdd<N> for vec::Vec0<N>
{
#[inline]
fn scalar_add(&self, _: &N) -> vec::Vec0<N>
{ vec::Vec0 }
#[inline]
fn scalar_add_inplace(&mut self, _: &N)
{ }
}
impl<N: Sub<N, N>> ScalarSub<N> for vec::Vec0<N>
{
#[inline]
fn scalar_sub(&self, _: &N) -> vec::Vec0<N>
{ vec::Vec0 }
#[inline]
fn scalar_sub_inplace(&mut self, _: &N)
{ }
}
impl<N: Clone + Add<N, N> + Neg<N>> Translation<vec::Vec0<N>> for vec::Vec0<N>
{
#[inline]
fn translation(&self) -> vec::Vec0<N>
{ self.clone() }
#[inline]
fn inv_translation(&self) -> vec::Vec0<N>
{ -self }
#[inline]
fn translate_by(&mut self, t: &vec::Vec0<N>)
{ *self = *self + *t; }
}
impl<N: Add<N, N> + Neg<N> + Clone> Translatable<vec::Vec0<N>, vec::Vec0<N>> for vec::Vec0<N>
{
#[inline]
fn translated(&self, t: &vec::Vec0<N>) -> vec::Vec0<N>
{ self + *t }
}
impl<N: Clone + DivisionRing + Algebraic> Norm<N> for vec::Vec0<N>
{
#[inline]
fn sqnorm(&self) -> N
{ self.dot(self) }
#[inline]
fn norm(&self) -> N
{ self.sqnorm().sqrt() }
#[inline]
fn normalized(&self) -> vec::Vec0<N>
{
let mut res : vec::Vec0<N> = self.clone();
res.normalize();
res
}
#[inline]
fn normalize(&mut self) -> N
{
let l = self.norm();
self.scalar_div_inplace(&l);
l
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for vec::Vec0<N>
{
#[inline]
fn approx_epsilon() -> N
{ ApproxEq::approx_epsilon::<N, N>() }
#[inline]
fn approx_eq(&self, _: &vec::Vec0<N>) -> bool
{ true }
#[inline]
fn approx_eq_eps(&self, _: &vec::Vec0<N>, _: &N) -> bool
{ true }
}
impl<N: Clone + One> One for vec::Vec0<N>
{
#[inline]
fn one() -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N, Iter: Iterator<N>> FromIterator<N, Iter> for vec::Vec0<N>
{
fn from_iterator(_: &mut Iter) -> vec::Vec0<N>
{ vec::Vec0 }
}
impl<N: Bounded + Clone> Bounded for vec::Vec0<N>
{
#[inline]
fn max_value() -> vec::Vec0<N>
{ vec::Vec0 }
#[inline]
fn min_value() -> vec::Vec0<N>
{ vec::Vec0 }
}

View File

@ -82,7 +82,6 @@ macro_rules! dim_impl(
)
)
// FIXME: add the possibility to specialize that
macro_rules! basis_impl(
($t: ident, $dim: expr) => (
impl<N: Clone + DivisionRing + Algebraic + ApproxEq<N>> Basis for $t<N>

View File

@ -6,12 +6,6 @@ use traits::norm::Norm;
use traits::sample::UniformSphereSample;
use vec::{Vec1, Vec2, Vec3};
// FIXME: impl<N, Iter: Iterator<N>> FromIterator<N, Iter> for Vec0<N>
// FIXME: {
// FIXME: fn from_iterator(_: &mut Iter) -> Vec0<N>
// FIXME: { Vec0 { at: [ ] } }
// FIXME: }
impl<N: Mul<N, N> + Sub<N, N>> Cross<Vec1<N>> for Vec2<N>
{
#[inline]